J. Mater. Sci. Technol. ›› 2022, Vol. 129: 163-172.DOI: 10.1016/j.jmst.2022.04.037
• Research Article • Previous Articles Next Articles
Yanqin Fua, Yulei Zhanga,*(), Xuemin Yina, Liyuan Hana, Qiangang Fua, Hejun Lia, Ralf Riedelb
Received:
2022-02-28
Revised:
2022-03-29
Accepted:
2022-04-04
Published:
2022-05-27
Online:
2022-05-27
Contact:
Yulei Zhang
About author:
* E-mail addresses: zhangyulei@nwpu.edu.cn (Y. Zhang).Yanqin Fu, Yulei Zhang, Xuemin Yin, Liyuan Han, Qiangang Fu, Hejun Li, Ralf Riedel. Two birds with one stone: Simultaneous fabrication of HfC nanowires and CNTs through efficient utilization of polymer-derived ceramics[J]. J. Mater. Sci. Technol., 2022, 129: 163-172.
Fig. 2. Typical SEM images and schematic illustrations of the as-prepared HfCNWs (S0) and CNTs synthesized in different temperature zones (1300, 1100, 900 and 700 °C) corresponding to S1, S2, S3 and, S4, respectively.
Fig. 3. Microstructure of the as-prepared HfCNWs. (a) Typical SEM image of HfCNWs, inset of (a): Schematic diagram of C/C composites with in situ grown HfCNWs; (b, c) Enlarged area with radially upright nanowires; (d) TEM image of single HfCNW, inset on the left shows the corresponding HRTEM image and SAED pattern, while the inset on the right depicts the amorphous HfOC layer; (e) XRD pattern of C/C with HfCNWs.
Material | IA/IG | ID’/IG | I*D/I*G |
---|---|---|---|
S3 | 1.952±0.020 | 0.764±0.003 | 2.128±0.016 |
S2 | 2.235±0.041 | 0.463±0.010 | 1.892±0.012 |
S1 | 2.205±0.025 | 0.684±0.008 | 2.355±0.023 |
Table 1. Structure parameters obtained from Raman spectra of S1-S3.
Material | IA/IG | ID’/IG | I*D/I*G |
---|---|---|---|
S3 | 1.952±0.020 | 0.764±0.003 | 2.128±0.016 |
S2 | 2.235±0.041 | 0.463±0.010 | 1.892±0.012 |
S1 | 2.205±0.025 | 0.684±0.008 | 2.355±0.023 |
Fig. 5. Formation of CNTs. (a) in situ TG-MS study of the Hf-containing polymeric precursor [m/z = 16 (CH4); m/z = 28 (CO); m/z = 44 (CO2)]; (b) Gibbs free energy vs. temperature (Ellingham diagram) for the reaction of NiO with H2 and CO; (c) Schematic diagram of the HfCNWs and CNTs formation via one-step method.
Fig. 7. Mechanical property of C/C and HfCNWs-C/C composites. (a) Stress-strain curves of flexural strength; (b) Flexural modulus; (c) and (d) SEM images of the flexural fracture of C/C and HfCNWs-C/C composites; (e) and (f) Schematic diagram of the toughing mechanism of C/C and HfCNWs-C/C composites, respectively; (g) Related flexural performance of nano-reinforced C/C composites reported in other literatures [37], [38], [39], [40], [41], [42], [43], [44].
Fig. 8. Electrochemical performance of different samples. (a) CV curves of samples at 50 mV s?1 in a three-electrode system; (b) GCD curves of samples S1-S3 and carbon cloth electrodes at 1 A g?1; (c) Nyquist plots of the samples; (d) CV curves of sample S2 at different scan rates; (e) Variation of specific capacitance of sample S2 with current density, and (inset (e)) GCD curves of S2 at different current densities; (f) Cycling performance of S2 at a scan rate of 500 mV s?1 and (inset (f)) CV curves of S2 at 500 mV s?1 under different cycles.
[1] |
B. Li, H.J. Li, X.Y. Yao, X.F. Tian, Y.J. Jia, G.H. Feng, J. Mater. Sci. Technol. 115 (2022) 129-139.
DOI |
[2] |
Y.L. Xu, W. Sun, X. Xiong, F.Q. Liu, X.G. Luan, J. Mater. Sci. Technol. 35 (2019) 2785-2798.
DOI URL |
[3] |
T.Y. Wang, H.J. Li, Q.L. Shen, K. Li, W. Li, Q. Song, S.Y. Zhang, Compos. B. Eng. 192 (2020) 107982.
DOI URL |
[4] |
G.L. Vignoles, Y. Aspa, M. Quintard, Compos. Sci. Technol. 70 (2010) 1303-1311.
DOI URL |
[5] |
F.Y. Zhu, L.L. Zhang, K.J. Guan, H.J. Li, Y. Yang, ACS Appl. Nano Mater. 3 (2020) 5252-5259.
DOI URL |
[6] |
W. Zaman, K.Z. Li, S. Ikram, W. Li, D.S. Zhang, L.J. Guo, Corros. Sci. 61 (2012) 134-142.
DOI URL |
[7] |
L.Y. Han, C.X. Xiao, Q. Song, X.M. Yin, W. Li, K.Z. Li, Y.Y. Li, Carbon 190 (2022) 422-429.
DOI URL |
[8] |
L.Y. Han, Q. Song, J.J. Sun, K.Z. Li, Y.F. Lu, Compos. B. Eng. 187 (2020) 107856.
DOI URL |
[9] |
S.L. Zhang, Y. Ma, L. Suresh, A. Hao, M. Bick, S.C. Tan, J. Chen, ACS Nano 14 (2020) 9282-9319.
DOI URL |
[10] |
Q.G. Fu, L. Wang, X.F. Tian, Q.L. Shen, Compos. B. Eng. 164 (2019) 620-628.
DOI URL |
[11] |
S. Tian, L. Zhou, Z.T. Liang, Y. Yang, Y.R. Wang, X.F. Qiang, S.L. Huang, H.J. Li, S. Feng, Z.H. Qian, Y.B. Zhang, Carbon 161 (2020) 331-340.
DOI URL |
[12] |
H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2778-2784.
DOI |
[13] |
N. Patra, W.E. Lee, ACS Appl. Nano Mater. 1 (2018) 4502-4508.
DOI URL |
[14] |
Q.B. Wen, Y.P. Xu, B.B. Xu, C. Fasel, O. Guillon, G. Buntkowsky, Z.J. Yu, R. Riedel, E. Ionescu, Nanoscale 6 (2014) 13678-13689.
DOI URL |
[15] |
C. Chen, S.F. Zeng, X.C. Han, Y.Q. Tan, W.L. Feng, H.H. Shen, S.M. Peng, H.B. Zhang, J. Mater. Sci. Technol. 54 (2020) 223-229.
DOI |
[16] |
Q.B. Wen, Z.J. Yu, R. Riedel, Prog. Mater. Sci. 109 (2020) 100623.
DOI URL |
[17] |
X.L. Liu, X.W. Yin, W.Y. Duan, F. Ye, X.L. Li, J. Mater. Sci. Technol. 35 (2019) 2832-2839.
DOI URL |
[18] |
B.S. Xu, C.Q. Hong, X.H. Zhang, J.C. Han, W.B. Han, F.X. Qin, J. Am. Ceram. Soc. 98 (2015) 3699-3705.
DOI URL |
[19] |
Q.C. He, H.J. Li, X.M. Yin, J.H. Lu, J. Mater. Sci. Technol. 71 (2021) 55-66.
DOI URL |
[20] |
Z.J. Yu, X. Lv, S.Y. Lai, L. Yang, W.J. Lei, X.G. Luan, R. Riedel, J. Adv. Ceram. 8 (2019) 112-120.
DOI URL |
[21] | D. Huang, M.Y. Zhang, Q.Z. Huang, L.P. Wang, K. Tong, J. Mater. Sci. Technol. 33 (2017) 4 81-4 86. |
[22] |
B.S. Xu, S.B. Zhou, C.Q. Hong, J.C. Han, X.H. Zhang, Carbon 102 (2016) 487.
DOI URL |
[23] | H.B. Du, Y.L. Li, F.Q. Zhou, D. Su, F. Hou, J. Am. Ceram. Soc. 93 (2010) 1290-1296. |
[24] | Y.Q. Fu, Y.L. Zhang, J.C. Ren, T. Li, H.H. Wang, J. Am. Ceram. Soc. 102 (2019) 2924-2931. |
[25] |
L. Feng, K.Z. Li, J.H. Lu, L.H. Qi, J. Mater. Sci. Technol. 33 (2017) 65-70.
DOI |
[26] |
Y.Q. Fu, Y.L. Zhang, X.M. Yin, T. Li, J. Zhang, J. Am. Ceram. Soc. 103 (2020) 3458-3465.
DOI URL |
[27] |
X.M. Yin, H.J. Li, Y.Q. Fu, R.M. Yuan, J.H. Lu, Chem. Eng. J. 392 (2020) 124820.
DOI URL |
[28] |
K. Bogdanov, A. Fedorov, V. Osipov, T. Enoki, K. Takai, T. Hayashi, V. Ermakov, S. Moshkalev, A. Baranov, Carbon 73 (2014) 78-86.
DOI URL |
[29] |
L.G. Cancado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, Phys. Rev. Lett. 93 (2004) 247401.
DOI URL |
[30] |
Q. Song, K.Z. Li, H.L. Li, H.J. Li, C. Ren, Carbon 50 (2012) 3949-3952.
DOI URL |
[31] |
J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.C. Charlier, Phys. Rev. Lett. 87 (2001) 275504.
DOI URL |
[32] |
V.Y. Iakovlev, D.V. Krasnikov, E.M. Khabushev, J.V. Kolodiazhnaia, Carbon 153 (2019) 100-103.
DOI URL |
[33] |
S. Tian, Y.L. Zhang, L. Zhou, S.L. Huang, J.J. Ren, J.C. Ren, S.Y. Zhang, H.J. Li, J. Eur. Ceram. Soc. 41 (2021) 73-83.
DOI URL |
[34] |
Y.Q. Fu, Y.L. Zhang, J. Zhang, T. Li, G.H. Chen, Ceram. Int. 46 (2020) 16142-16150.
DOI URL |
[35] |
M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 10 (2010) 3739-3758.
DOI URL |
[36] |
N.N. Yan, X.H. Shi, K. Li, Q.G. Fu, W. Xie, H.R. Zhang, Q. Song, Compos. B. Eng. 154 (2018) 200-208.
DOI URL |
[37] |
H.L. Li, H.J. Li, J.H. Lu, K.Z. Li, C. Sun, D.S. Zhang, Mater. Sci. Eng. A 547 (2012) 138-141.
DOI URL |
[38] |
Q. Song, K.Z. Li, L.H. Qi, H.J. Li, J.H. Lu, L.L. Zhang, Q.G. Fu, Mater. Sci. Eng. A 564 (2013) 71-75.
DOI URL |
[39] |
L. Feng, K.Z. Li, B. Xue, Q.G. Fu, L.L. Zhang, Mater. Des. 113 (2017) 9-16.
DOI URL |
[40] |
Q.G. Fu, B.Y. Tan, L. Zhuang, J.Y. Jing, Mater. Sci. Eng. A 672 (2016) 121-128.
DOI URL |
[41] |
H. Wang, H.J. Li, X.S. Liu, N. Li, Q. Song, Ceram. Int. 45 (2019) 2521-2529.
DOI |
[42] | Q.L. Shen, H.J. Li, H.J. Lin, L. Li, W. Li, Q. Song, J. Mater. Chem. C 6 (2018) 5888-5899. |
[43] |
Q.L. Shen, H.J. Li, W. Li, Q. Song, J. Alloy. Compd. 738 (2018) 49-55.
DOI URL |
[44] |
X.F. Lu, P. Xiao, Carbon 59 (2013) 176-183.
DOI URL |
[1] | Siyao Guo, Yunfeng Bao, Ying Li, Hailong Guan, Dongyi Lei, Tiejun Zhao, Baomin Zhong, Zhihong Li. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks [J]. J. Mater. Sci. Technol., 2022, 118(0): 218-228. |
[2] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
[3] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[4] | Zhong Huang, Yangfan Zheng, Haijun Zhang, Faliang Li, Yuan Zeng, Quanli Jia, Jun Zhang, Junyi Li, Shaowei Zhang. High-yield production of carbon nanotubes from waste polyethylene and fabrication of graphene-carbon nanotube aerogels with excellent adsorption capacity [J]. J. Mater. Sci. Technol., 2021, 94(0): 90-98. |
[5] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
[6] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[7] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[8] | Feng Zhang, Jia Sun, Yonggang Zheng, Peng-Xiang Hou, Chang Liu, Min Cheng, Xin Li, Hui-Ming Cheng, Zhen Chen. The importance of H2 in the controlled growth of semiconducting single-wall carbon nanotubes [J]. J. Mater. Sci. Technol., 2020, 54(0): 105-111. |
[9] | Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review [J]. J. Mater. Sci. Technol., 2020, 46(0): 74-87. |
[10] | X.X. Zhang, J.F. Zhang, Z.Y. Liu, W.M. Gan, M. Hofmann, H. Andrä, B.L. Xiao, Z.Y. Ma. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54(0): 58-68. |
[11] | Jennifer A. Rudd, Cathren E. Gowenlock, Virginia Gomez, Ewa Kazimierska, Abdullah M. Al-Enizi, Enrico Andreoli, Andrew R. Barron. Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2019, 35(6): 1121-1127. |
[12] | Yang Hu, Runjian Jiang, Jingbao Zhang, Chengsong Zhang, Guodong Cui. Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(5): 886-890. |
[13] | Pawel Mierczynski, Sergey V. Dubkov, Sergey V. Bulyarskii, Alexander A. Pavlov, Sergey N. Skorik, Alexey Yu Trifonov, Agnieszka Mierczynska, Eugene P. Kitsyuk, Sergey A. Gavrilov, Tomasz P. Maniecki, Dmitry G. Gromov. Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method [J]. J. Mater. Sci. Technol., 2018, 34(3): 472-480. |
[14] | Zhao Ke, Liu Zhenyu, Xiao Bolyu, Ma Zongyi. Friction stir welding of carbon nanotubes reinforced Al-Cu-Mg alloy composite plates [J]. J. Mater. Sci. Technol., 2017, 33(9): 1004-1008. |
[15] | Yuan Qiuhong, Zeng Xiaoshu, Wang Yanchun, Luo Lan, Ding Yan, Li Dejiang, Liu Yong. Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs [J]. J. Mater. Sci. Technol., 2017, 33(5): 452-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||