J. Mater. Sci. Technol. ›› 2022, Vol. 127: 214-224.DOI: 10.1016/j.jmst.2022.03.023
• Research Article • Previous Articles Next Articles
Chuanxin Zhonga,b, Dingshan Lianga, Tian Wana, Shan Hea, Lu Yanga, Ju Fanga, Ge Zhangb, Fuzeng Rena,*()
Received:
2022-01-04
Revised:
2022-03-10
Accepted:
2022-03-28
Published:
2022-11-10
Online:
2022-11-10
Contact:
Fuzeng Ren
About author:
* E-mail address: renfz@sustech.edu.cn (F. Ren)Chuanxin Zhong, Dingshan Liang, Tian Wan, Shan He, Lu Yang, Ju Fang, Ge Zhang, Fuzeng Ren. Ultrafine-grained Nb-Cu immiscible alloy implants for hard tissue repair: Fabrication, characterization, and in vitro and in vivo evaluation[J]. J. Mater. Sci. Technol., 2022, 127: 214-224.
Fig. 1. Characterization of the Nb-Cu powders and the as-sintered Nb-Cu alloys. (a-c) XRD patterns of the starting powder mixtures, 12 h-ball-milled powders, and the spark-plasma-sintered alloys, respectively. (d-f) SEM images, EBSD grain orientation maps and corresponding phase maps of Nb, Nb-0.5Cu and Nb-3Cu, respectively.
Samples | Micro-hardness (HV) | Yield strength (GPa) | Compressive strength (GPa) | Fracture strain (%) | Magnetic susceptibility (×10−6 cm3/g) |
---|---|---|---|---|---|
Nb | 354.2 ± 10.3 | 1.27± 0.30 | 1.57 ± 0.07 | 16.7 ± 2.3 | 2.27 |
Nb-0.5Cu | 364.6 ± 7.9 | 1.11± 0.20 | 2.15 ± 0.05 | 39.6 ± 0.7 | 2.13 |
Nb-3Cu | 377.5 ± 9.4 | 1.01± 0.09 | 2.21 ± 0.04 | 41.1 ± 1.2 | 2.09 |
Table 1. Mechanical properties and magnetic susceptibility of the Nb-0.5Cu and Nb-3Cu alloys in comparison with pure Nb.
Samples | Micro-hardness (HV) | Yield strength (GPa) | Compressive strength (GPa) | Fracture strain (%) | Magnetic susceptibility (×10−6 cm3/g) |
---|---|---|---|---|---|
Nb | 354.2 ± 10.3 | 1.27± 0.30 | 1.57 ± 0.07 | 16.7 ± 2.3 | 2.27 |
Nb-0.5Cu | 364.6 ± 7.9 | 1.11± 0.20 | 2.15 ± 0.05 | 39.6 ± 0.7 | 2.13 |
Nb-3Cu | 377.5 ± 9.4 | 1.01± 0.09 | 2.21 ± 0.04 | 41.1 ± 1.2 | 2.09 |
Fig. 5. Antibacterial evaluation of Nb, Nb-0.5Cu and Nb-3Cu alloys after 24 h of incubation. (a) Representative photographs of colonies of E. coli and S. aureus. (b, c) Statistical analysis of total colony-forming units. (d) SEM micrographs of the bacteria morphology. The data were followed by one-way ANOVA with post-hoc test. **** p < 0.0001.
Fig. 6. In vitro biocompatibility evaluation of Nb, Nb-0.5Cu and Nb-3Cu alloys. (a) MC3T3-E1 pre-osteoblasts proliferation. (b) Live (green)/Dead (red) staining of the MC3T3-E1 cells after 24 h of incubation with Nb, Nb-0.5Cu and Nb-3Cu, respectively.
Fig. 7. Cell adhesion on the Nb, Nb-0.5Cu and Nb-3Cu alloys. (a) SEM and (b) confocal laser scanning microscope (CLSM) images of MC3T3-E1 cells after 24 h of incubation. The actin filaments (red) and the nuclei (blue) were stained with Alexa Fluor 568 phalloidin and Hoechst, respectively.
Fig. 8. Quantification of in vitro osteogenic potential of Nb, Nb-0.5Cu and Nb-3Cu alloys. (a) ALP activity. (b) Statistical stained area. (c) Representative images of alizarin red staining of MC3T3-E1 cells after 14 days of incubation. (d, e) Relative expression of osteogenesis-related genes (RUNX2, ALP, COLA1 and OCN) after 7 and 14 days of incubation, respectively. Note: these values are expressed as mean ± standard deviation. The data were followed by one-way ANOVA with post-hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
Fig. 9. (a) Micro-CT 3D reconstruction of skull bones after implantation for 2 months. (b) Bone mineral density. (c) Bone volume fraction (BV/TV). (d) Optical images of the Hematoxylin-eosin (HE) stained histological sections of peri-implant after 12 weeks of skull implantation. Notes: HS, Haversian structure; ob, osteoblast; fb, fibroblast. Note: these values are expressed as mean ± standard deviation. The data were followed by a one-way ANOVA with post-hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001.
Fig. 10. Optical images of the methylene blue/basic fuchsin-stained histological sections of peri-implants after 12 weeks of implantation in femur with (a) Nb, (b) Nb-0.5Cu and (c) Nb-3Cu bone screws. Notes: HS, Haversian structure; NBF, new bone formation.
[1] |
Q. Chen, G.A. Thouas, Mater. Sci. Eng. R 87 (2015) 1-57.
DOI URL |
[2] |
K. Prasad, O. Bazaka, M. Chua, M. Rochford, L. Fedrick, J. Spoor, R. Symes, M. Tieppo, C. Collins, A. Cao, D. Markwell, K.K. Ostrikov, K. Bazaka, Materials 10 (2017) 884-917.
DOI URL |
[3] | J. Wilson, Fundamental Biomaterials: Metals, Springer, Duxford, 2018. |
[4] |
M. Niinomi, M. Nakai, J. Hieda, Acta Biomater 8 (2012) 3888-3903.
DOI PMID |
[5] |
M. Wang, Biomaterials 24 (2003) 2133-2151.
PMID |
[6] | E.P. Ivanova, K. Bazaka, R.J. Crawford, New Functional Biomaterials For Medicine and Healthcare, Elsevier, 2014. |
[7] |
P. Chapala, P. Sunil Kumar, J. Joardar, V. Bhandari, S.G. Acharyya, Appl. Surf. Sci. 469 (2019) 617-623.
DOI URL |
[8] |
D. Lison, S. van den Brule, G. Van Maele-Fabry, Crit. Rev. Toxicol. 48 (2018) 522-539.
DOI PMID |
[9] |
K. Yang, C. Zhou, H. Fan, Y. Fan, Q. Jiang, P. Song, H. Fan, Y. Chen, X. Zhang, Int. J. Mol. Sci. 19 (2017) 24-45.
DOI URL |
[10] |
M. Xiao, Y.M. Chen, M.N. Biao, X.D. Zhang, B.C. Yang, Mater. Sci. Eng. C 70 (2017) 1057-1070.
DOI URL |
[11] |
A. Dehghanghadikolaei, B. Fotovvati, Materials 12 (2019) 1795.
DOI URL |
[12] |
J. Liu, X. Zhang, H. Wang, F. Li, M. Li, K. Yang, E. Zhang, Biomed. Mater. 9 (2014) 025013.
DOI URL |
[13] |
A. Trampuz, A.F. Widmer, Curr. Opin. Infect. Dis. 19 (2006) 349-356.
PMID |
[14] |
H. Matusiewicz, Acta Biomater. 10 (2014) 2379-2403.
DOI PMID |
[15] |
G. Li, H. Yang, Y. Zheng, X.H. Chen, J.A. Yang, D. Zhu, L. Ruan, K. Takashima, Acta Biomater. 97 (2019) 23-45.
DOI URL |
[16] | B. O’Brien, J. Stinson, W. Carroll, J. Mech. Behav. Biomed.Mater. 1 (2008) 303-312. |
[17] | P. Wei, J. Fang, L. Fang, K. Wang, X. Lu, F. Ren, Appl. Mater.Today 15 (2019) 531-542. |
[18] |
T. Wan, K. Chu, J. Fang, C. Zhong, Y. Zhang, X. Ge, Y. Ding, F. Ren, J. Mater. Sci. Technol. 80 (2021) 266-278.
DOI URL |
[19] | R. Godley, D. Starosvetsky, I. Gotman, Appl. Surf. Sci. 15 (2004) 1073-1077. |
[20] |
H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials 22 (2001) 1253-1262.
PMID |
[21] |
J.F. Bartolomé, J.S. Moya, R. Couceiro, C.F. Gutiérrez-González, F. Guitián, A. Martinez-Insua, Biomaterials 76 (2016) 313-320.
DOI PMID |
[22] | C.B. Johansson, T. Albrektsson, Appl. Surf. Sci. 2 (1991) 24-29. |
[23] | M.I.Z. Ridzwan, S. Shuib, A.Y. Hassan, A.A. Shokri, M.N. Mohamad Ib, Appl. Surf. Sci. 7 (2007) 460-467. |
[24] |
H.F. Li, F.Y. Zhou, L. Li, Y.F. Zheng, Appl. Surf. Sci. 6 (2016) 1-10.
DOI URL |
[25] |
H.Z. Li, J. Xu, J. Mech. Behav. Biomed. Mater. 32 (2014) 166-176.
DOI URL |
[26] | G. Grass, C. Rensing, M. Solioz, J. Mech. Behav. Biomed. Mater. 77 (2011) 1541-1547. |
[27] |
T.M. Gross, J. Lahiri, A. Golas, J. Luo, F. Verrier, J.L. Kurzejewski, D.E. Baker, J. Wang, P.F. Novak, M.J. Snyder, Nat. Commun. 10 (2019) 1-8.
DOI URL |
[28] |
Y.Z. Wan, G.Y. Xiong, H. Liang, S. Raman, F. He, Y. Huang, Appl. Surf. Sci. 253 (2007) 9426-9429.
DOI URL |
[29] |
R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep. 6 (2016) 29985.
DOI URL |
[30] |
R. Dong, W. Zhu, C. Zhao, Y. Zhang, F. Ren, Metall. Mater. Trans. A 49 (2018) 6147-6160.
DOI URL |
[31] |
J. Cui, L. Zhao, W. Zhu, B. Wang, C. Zhao, L. Fang, F. Ren, J. Mech. Behav. Biomed. Mater. 74 (2017) 315-323.
DOI URL |
[32] |
H. Chai, L. Guo, X. Wang, Y. Fu, J. Guan, L. Tan, L. Ren, K. Yang, J. Mater. Sci.: Mater. Med. 22 (2011) 2525-2535.
DOI URL |
[33] |
I. Burghardt, F. Luthen, C. Prinz, B. Kreikemeyer, C. Zietz, H.G. Neumann, J. Rychly, Biomaterials 44 (2015) 36-44.
DOI PMID |
[34] |
A. Bari, N. Bloise, S. Fiorilli, G. Novajra, M. Vallet-Regi, G. Bruni, A. Torres-Pardo, J.M. Gonzalez-Calbet, L. Visai, C. Vitale-Brovarone, Acta Biomater. 55 (2017) 493-504.
DOI URL |
[35] |
Y. Lu, L. Li, Y. Zhu, X. Wang, M. Li, Z. Lin, X. Hu, Y. Zhang, Q. Yin, H. Xia, C. Mao, ACS Appl. Mater. Interfaces 10 (2018) 127-138.
DOI URL |
[36] |
C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Biomaterials 34 (2013) 422-433.
DOI URL |
[37] | S. Moniri Javadhesari, S. Alipour, M.R. Akbarpour, Colloids Surf. 189 (2020) 110889. |
[38] |
R. Liu, Y. Tang, H. Liu, L. Zeng, Z. Ma, J. Li, Y. Zhao, L. Ren, K. Yang, J. Mater. Sci. Technol. 47 (2020) 202-215.
DOI URL |
[39] |
C. Liu, X. Fu, H. Pan, P. Wan, L. Wang, L. Tan, K. Wang, Y. Zhao, K. Yang, P.K. Chu, Sci. Rep. 6 (2016) 27374.
DOI URL |
[40] | Y. Yuan, S. Jin, X. Qi, X. Chen, W. Zhang, K. Yang, H. Zhong, J. Mater. Sci. Tech-nol. 35 (2019) 2727-2733. |
[41] |
Y. Li, L. Liu, P. Wan, Z. Zhai, Z. Mao, Z. Ouyang, D. Yu, Q. Sun, L. Tan, L. Ren, Z. Zhu, Y. Hao, X. Qu, K. Yang, K. Dai, Biomaterials 106 (2016) 250-263.
DOI PMID |
[42] |
H. Okamoto, J. Phase Equilib. Diffus. 33 (2012) 344.
DOI URL |
[43] |
Z. Ma, L. Ren, R. Liu, K. Yang, Y. Zhang, Z. Liao, W. Liu, M. Qi, R.D.K. Misra, J. Mater. Sci. Technol. 31 (2015) 723-732.
DOI URL |
[44] |
E. Zhang, C. Liu, Mater. Sci. Eng. C 69 (2016) 134-143.
DOI URL |
[45] |
S. Jin, X. Qi, T. Wang, L. Ren, K. Yang, H. Zhong, J. Biomed. Mater. Res. A 106 (2018) 561-569.
DOI URL |
[46] |
L. Wang, G. Li, L. Ren, X. Kong, Y. Wang, X. Han, W. Jiang, K. Dai, K. Yang, Y. Hao, Int. J. Nanomed. 12 (2017) 8443-8457.
DOI PMID |
[47] | L. Ren, H.M. Wong, C.H. Yan, K.W. Yeung, K. Yang, J. Biomed. Mater. Res. Pt. B 103 (2015) 1433-1444. |
[48] |
J. Cui, L. Zhao, W. Zhu, B. Wang, C. Zhao, L. Fang, F. Ren, J. Mech. Behav. Biomed. Mater. 74 (2017) 315-323.
DOI URL |
[49] |
J.F. Schenck, Med. Phys. 23 (1996) 815-850.
PMID |
[50] |
C.A. Della Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri, Corros. Sci. 57 (2012) 154-161.
DOI URL |
[51] |
H. Wei, J. Chen, N. Fu, H. Chen, H. Lin, S. Han, Electrochim. Acta 266 (2018) 161-169.
DOI URL |
[52] |
M. Wang, R.S. Averback, P. Bellon, S. Dillon, Acta Mater. 62 (2014) 276-285.
DOI URL |
[53] |
P. Szymanski, T. Fraczek, M. Markowicz, E. Mikiciuk-Olasik, BioMetals 25 (2012) 1089-1112.
DOI URL |
[54] |
S. Jin, L. Ren, K. Yang, J. Mater. Sci. Technol. 32 (2016) 835-839.
DOI URL |
[55] |
G.F. Hu, J. Cell. Biochem. 69 (1998) 326-335.
PMID |
[56] |
A. Baker, E. Turley, M.P. Bonham, J.M. O’Connor, J.J. Strain, A. Flynn, K.D. Cash-man, Br. J. Nutr. 82 (2007) 283-290.
DOI URL |
[57] |
J. Li, D. Zhai, F. Lv, Q. Yu, H. Ma, J. Yin, Z. Yi, M. Liu, J. Chang, C. Wu, Acta Biomater. 36 (2016) 254-266.
DOI URL |
[58] |
Y. Zhuang, L. Ren, S. Zhang, X. Wei, K. Yang, K. Dai, Acta Biomater. 119 (2021) 472-484.
DOI PMID |
[59] |
W. Liu, J. Li, M. Cheng, Q. Wang, Y. Qian, K.W.K. Yeung, P.K. Chu, X. Zhang, Biomaterials 208 (2019) 8-20.
DOI URL |
[60] |
S. Mathews, R. Kumar, M. Solioz, Appl. Environ. Microbiol. 81 (2015) 6399-6403.
DOI URL |
[61] |
M. Li, Z. Ma, Y. Zhu, H. Xia, M. Yao, X. Chu, X. Wang, K. Yang, M. Yang, Y. Zhang, C. Mao, Adv. Healthc. Mater. 5 (2016) 557-566.
DOI URL |
[62] |
S. Kar, B. Bagchi, B. Kundu, S. Bhandary, R. Basu, P. Nandy, S. Das, Biochim. Biophys. Acta 1840 (2014) 3264-3276.
DOI PMID |
[63] |
B. Cao, Y. Zheng, T. Xi, C. Zhang, W. Song, K. Burugapalli, H. Yang, Y. Ma, Biomed. Microdevices 14 (2012) 709-720.
DOI URL |
[64] |
T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24 (2003) 2161-2175.
DOI URL |
[65] |
L.G. Strause, J. Hegenauer, P. Saltman, R. Cone, D. Resnick, J. Nutr. 116 (1986) 135-141.
PMID |
[66] |
J.P. Rodriguez, S. Rios, M. Gonzalez, J. Cell. Biochem. 85 (2002) 92-100.
DOI URL |
[67] |
H. Wang, S. Zhao, J. Zhou, Y. Shen, W. Huang, C. Zhang, M.N. Rahaman, D. Wang, J. Mater. Chem. B 2 (2014) 8547-8557.
DOI PMID |
[68] |
W. Feng, F. Ye, W. Xue, Z. Zhou, Y.J. Kang, Mol. Pharmacol. 75 (2009) 174-182.
DOI URL |
[1] | Yaping Wang, Qianqian Wang, Guoyi Wu, Hengxue Xiang, Mugaanire Tendo Innocent, Mian Zhai, Chao Jia, Peng Zou, Jialiang Zhou, Meifang Zhu. Ultra-fast bacterial inactivation of Cu2O@halloysite nanotubes hybrids with charge adsorption and physical piercing ability for medical protective fabrics [J]. J. Mater. Sci. Technol., 2022, 122(0): 1-9. |
[2] | Zexin Liu, Xiangmei Liu, Zhenduo Cui, Yufeng Zheng, Zhaoyang Li, Yanqin Liang, Xubo Yuan, Shengli Zhu, Shuilin Wu. Surface photodynamic ion sterilization of ITO-Cu2O/ZnO preventing touch infection [J]. J. Mater. Sci. Technol., 2022, 122(0): 10-19. |
[3] | Dongdong Zhang, Jielong Zhou, Feng Peng, Ji Tan, Xianming Zhang, Shi Qian, Yuqin Qiao, Yu Zhang, Xuanyong Liu. Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis [J]. J. Mater. Sci. Technol., 2022, 105(0): 57-67. |
[4] | Lujie Zhang, Jie Pan, Jue Zhang. Integrated two-phase free radical hydrogel: Safe, ultra-fast tooth whitening and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 100(0): 59-66. |
[5] | Shan Fu, Yuan Zhang, Yi Yang, Xiaomeng Liu, Xinxin Zhang, Lei Yang, Dake Xu, Fuhui Wang, Gaowu Qin, Erlin Zhang. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species [J]. J. Mater. Sci. Technol., 2022, 119(0): 75-86. |
[6] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[7] | Guanpeng Liu, Yulong Li, Ming Yan, Jicai Feng, Jian Cao, Min Lei, Quanwen Liu, Xiaowu Hu, Wenqin Wang, Xuewen Li. Vacuum wetting of Ag/TA2 to develop a novel micron porous Ti with significant biocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 180-191. |
[8] | Guangyu Ren, Lili Huang, Kunling Hu, Tianxin Li, Yiping Lu, Dongxu Qiao, Haitao Zhang, Dake Xu, Tongmin Wang, Tingju Li, Peter K. Liaw. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 158-166. |
[9] | Jinlong Zhao, Chunguang Yang, Ke Yang. Novel Cu-bearing stainless steel: A promising food preservation material [J]. J. Mater. Sci. Technol., 2022, 113(0): 246-252. |
[10] | Luohuizi Li, Guize Li, Yong Wu, Yuancheng Lin, Yangcui Qu, Yan Wu, Kunyan Lu, Yi Zou, Hong Chen, Qian Yu, Yanxia Zhang. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties [J]. J. Mater. Sci. Technol., 2022, 110(0): 14-23. |
[11] | Luxin Liang, Qianli Huang, Hong Wu, Hao He, Guanghua Lei, Dapeng Zhao, Kun Zhou. Engineering nano-structures with controllable dimensional features on micro-topographical titanium surfaces to modulate the activation degree of M1 macrophages and their osteogenic potential [J]. J. Mater. Sci. Technol., 2022, 96(0): 167-178. |
[12] | Wei Juene Chong, Shirley Shen, Yuncang Li, Adrian Trinchi, Dejana Pejak, Ilias (Louis) Kyratzis, Antonella Sola, Cuie Wen. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges [J]. J. Mater. Sci. Technol., 2022, 111(0): 120-151. |
[13] | Lijun Fan, Wenxin Sun, Yuhong Zou, Qian-qian Xu, Rong-Chang Zeng, Jingrui Tian. Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies [J]. J. Mater. Sci. Technol., 2022, 111(0): 167-180. |
[14] | Yuan Zhang, Shan Fu, Lei Yang, Gaowu Qin, Erlin Zhang. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity [J]. J. Mater. Sci. Technol., 2022, 97(0): 201-212. |
[15] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||