J. Mater. Sci. Technol. ›› 2022, Vol. 125: 51-58.DOI: 10.1016/j.jmst.2022.02.031
• Research Article • Previous Articles Next Articles
Xiandong Xionga, Jian Yua, Xiaojian Huanga, Dan Zoua, Yufei Songb, Meigui Xua,*(), Ran Rana, Wei Wanga,*(
), Wei Zhoua, Zongping Shaoa,c
Received:
2021-12-14
Revised:
2022-01-17
Accepted:
2022-02-01
Published:
2022-04-14
Online:
2022-04-14
Contact:
Meigui Xu,Wei Wang
About author:
wangwei@njtech.edu.cn (W.Wang).Xiandong Xiong, Jian Yu, Xiaojian Huang, Dan Zou, Yufei Song, Meigui Xu, Ran Ran, Wei Wang, Wei Zhou, Zongping Shao. Slightly ruthenium doping enables better alloy nanoparticle exsolution of perovskite anode for high-performance direct-ammonia solid oxide fuel cells[J]. J. Mater. Sci. Technol., 2022, 125: 51-58.
Fig. 1. (a) XRD patterns of PSCFRu samples before and after treatment in 10 vol.% H2-Ar at 800 °C for 10 h. (b) H2-TPR curves of PSCF and PSCFRu samples. SEM images of (c) r-PSCFRu and (d) r-PSCF samples.
Fig. 2. (a) TEM and (b) HR-TEM images, (c) EDX line scanning and (d) STEM-EDX mapping of r-PSCFRu sample. (e) EDX point scanning of alloy nanoparticles in r-PSCFRu.
Fig. 3. XPS spectra of PSCFRu sample before and after the reducing atmosphere treatment: (a) Co 2p, (b) Fe 2p, (c) Ru 3p. XPS spectra of PSCF sample before and after the reducing atmosphere treatment: (d) Co 2p, (e) Fe 2p. (f) Ru 3d XPS spectra of PSCFRu and PSCF samples before and after the reducing atmosphere treatment.
Fig. 4. (a) Catalytic activity tests of r-PSCFRu and r-PSCF anodes for NDR at 550 to 800 °C. (b) Durability test of r-PSCFRu anode for NDR at 700 °C. I-V and I-P curves of SOFCs with r-PSCFRu, r-PSCF and Ni-SDC anodes operated on (c) H2, (d) N2-H2 and (e) NH3 fuels at 800 °C. (f) EIS spectra of SOFCs with r-PSCFRu, r-PSCF and Ni-SDC anodes operated on NH3 fuel at 800 °C.
Fig. 5. (a) Operational stability of single cells with r-PSCFRu, r-PSCF and Ni-SDC anodes operated on NH3 fuel under a certain current density of 100 mA cm-2 at 700 °C. SEM images of (b, c) Ni-SDC, (d, e) r-PSCF and (f, g) r-PSCFRu anodes before (b, d, f) and after (c, e, g) the treatment in NH3 fuel at 700 °C for 30 h.
[1] |
K. Jung, D.H. Kim, J. Kim, S. Ko, J.W. Choi, K.C. Kim, S.G. Lee, M.J. Lee, J. Mater. Sci. Technol. 59 (2020) 195-202.
DOI URL |
[2] |
P. Liu, N. Han, W. Wang, R. Ran, W. Zhou, Z. Shao, Adv. Mater. 33 (2021) 2002582.
DOI URL |
[3] |
Y. Li, M. Zhou, B. Cheng, Y. Shao, J. Mater. Sci. Technol. 56 (2020) 1-17.
DOI URL |
[4] |
X. Lu, T. Yu, H. Wang, L. Qian, R. Luo, P. Liu, Y. Yu, L. Liu, P. Lei, S. Yuan, J. Mater. Sci. Technol. 43 (2020) 154-160.
DOI URL |
[5] |
C. Yan, J. Huang, C. Wu, Y. Li, Y. Tan, L. Zhang, Y. Sun, X. Huang, J. Xiong, J. Mater. Sci. Technol. 42 (2020) 10-16.
DOI URL |
[6] |
W. Wang, D. Medvedev, Z. Shao, Adv. Funct. Mater. 28 (2018) 1802592.
DOI URL |
[7] |
H. Gu, M. Xu, Y. Song, C. Zhou, C. Su, W. Wang, R. Ran, W. Zhou, Z. Shao, Compos. B Eng. 213 (2021) 108726.
DOI URL |
[8] |
M. Xu, J. Yu, Y. Song, R. Ran, W. Wang, Z. Shao, Energy Fuels 34 (2020) 10568-10582.
DOI URL |
[9] |
X. Kuai, G. Yang, Y. Chen, H. Sun, J. Dai, Y. Song, R. Ran, W. Wang, W. Zhou, Z. Shao, Adv. Energy Mater. 9 (2019) 1902384.
DOI URL |
[10] |
Y. Song, Y. Chen, M. Xu, W. Wang, Y. Zhang, G. Yang, R. Ran, W. Zhou, Z. Shao, Adv. Mater. 32 (2020) 1906979.
DOI URL |
[11] |
A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources 305 (2016) 72-79.
DOI URL |
[12] |
H. Gu, G. Yang, Y. Hu, M. Liang, S. Chen, R. Ran, M. Xu, W. Wang, W. Zhou, Z. Shao, Int. J. Hydrog. Energy 45 (2020) 25996-26004.
DOI URL |
[13] |
J. Liu, J. Tan, W. Yang, Y. Li, C. Wang, Energy 229 (2021) 120796.
DOI URL |
[14] |
B. Yang, D. Li, C. Zeng, Y. Chen, Z. Guo, J. Wang, H. Shu, T. Yu, J. Zhu, Energy 228 (2021) 120592.
DOI URL |
[15] |
G.J. Stiegel, M. Ramezan, Int. J. Coal Geol. 65 (2006) 173-190.
DOI URL |
[16] |
Y. Huang, S. Liu, J. Clean. Prod. 256 (2020) 120447.
DOI URL |
[17] | C. Su, W. Wang, Z. Shao, Acc. Chem. Res. 2 (2021) 477-488. |
[18] |
X. Xu, C. Su, Z. Shao, Energy Fuels 35 (2021) 13585-13609.
DOI URL |
[19] | H. Aslannejad, L. Barelli, A. Babaie, S. Bozorgmehri, Appl. Energy 177 (2016) 179186. |
[20] |
G. Yang, C. Su, H. Shi, Y. Zhu, Y. Song, W. Zhou, Z. Shao, Energy Fuels 34 (2020) 15169-15194.
DOI URL |
[21] |
A. Afif, N. Radenahmad, Q. Cheok, S. Shams, J.H. Kim, A.K. Azad, Renew. Sustain. Energy Rev. 60 (2016) 822-835.
DOI URL |
[22] |
B. Tu, H. Wen, Y. Yin, F. Zhang, X. Su, D. Cui, M. Cheng, Int. J. Hydrog. Energy 45 (2020) 34069-34079.
DOI URL |
[23] |
D. Wang, S.I. Wong, J. Sunarso, M. Xu, W. Wang, R. Ran, W. Zhou, Z. Shao, ACS Appl. Mater. Interfaces 13 (2021) 20105-20113.
DOI URL |
[24] |
W. Zhang, H. Wang, K. Guan, J. Meng, Z. Wei, X. Liu, J. Meng, ACS Appl. Mater. Interfaces 12 (2020) 461-473.
DOI URL |
[25] |
Y. Sun, X. Zhou, Y. Zeng, B.S. Amirkhiz, M. Wang, L. Zhang, B. Hua, J. Li, J. Li, J. Luo, J. Mater. Chem. A 3 (2015) 22830-22838.
DOI URL |
[26] |
Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, Adv. Mater. 29 (2017) 1700132.
DOI URL |
[27] |
Y. Wang, Y. Gu, H. Zhang, J. Yang, J. Wang, W. Guan, J. Chen, B. Chi, L. Jia, H. Muroyama, T. Matsui, K. Eguchi, Z. Zhong, Appl. Energy 270 (2020) 115185.
DOI URL |
[28] | K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources 365 (2017) 148154. |
[29] | K. Miyazaki, H. Muroyama, T. Matsui, K. Eguchi, Sustain. Energy Fuels 4 (2020) 5238-5246. |
[30] |
F. He, Q. Gao, Z. Liu, M. Yang, R. Ran, G. Yang, W. Wang, W. Zhou, Z. Shao, Adv. Energy Mater. 11 (2021) 2003916.
DOI URL |
[31] |
Y. Song, H. Li, M. Xu, G. Yang, W. Wang, R. Ran, W. Zhou, Z. Shao, Small 16 (2020) 2001859.
DOI URL |
[32] |
H. Doh, H.Y. Kim, G.S. Kim, J. Cha, H.S. Park, H.C. Ham, S.P. Yoon, J. Han, S.W. Nam, K.H. Song, C.W. Yoon, ACS Sustain. Chem. Eng. 5 (2017) 9370-9379.
DOI URL |
[33] |
S. Yin, Q. Zhang, B. Xu, W. Zhu, C. Ng, C. Au, J. Catal. 224 (2004) 384-396.
DOI URL |
[34] |
S. Podila, H. Driss, S.F. Zaman, A.M. Ali, A.A. Al-Zahrani, M.A. Daous, L.A. Petrov, Int. J. Hydrog. Energy 42 (2017) 24213-24221.
DOI URL |
[35] |
X. Hu, W. Wang, Y. Gu, Z. Jin, Q. Song, C. Jia, ChemPlusChem 82 (2017) 368-375.
DOI URL |
[36] |
D.L. Huber, Small 1 (2005) 482-501.
PMID |
[37] |
J. Ji, X. Yan, G. Qian, C. Peng, X. Duan, X. Zhou, Int. J. Hydrog. Energy 42 (2017) 17466-17475.
DOI URL |
[38] |
X. Duan, G. Qian, X. Zhou, Z. Sui, D. Chen, W. Yuan, Appl. Catal. B 101 (2011) 189-196.
DOI URL |
[39] | X. Duan, G. Qian, X. Zhou, D. Chen, W. Yuan, Chem. Eng. J. 207-208 (2012) 103-108. |
[40] |
C. Chen, Y. Chen, A.M. Ali, W. Luo, J. Wen, L. Zhang, H. Zhang, Chem. Eng. Technol. 43 (2020) 719-730.
DOI URL |
[41] |
I. Lucentini, G.G. Colli, C.D. Luzi, I. Serrano, O.M. Martínez, J. Llorca, Appl. Catal. B 286 (2021) 119896.
DOI URL |
[42] |
X. Hu, W. Wang, Z. Jin, X. Wang, R. Si, C. Jia, J. Energy Chem. 38 (2019) 41-49.
DOI URL |
[43] | T. Matsunaga, S. Matsumoto, R. Tasaki, Y. Ogura, T. Eboshi, Y. Takeishi, K. Honda, K. Sato, K. Nagaoka, ACS Sustain. Chem. Eng. 8 (2020) 1336913376. |
[44] |
D. Neagu, T.S. Oh, D.N. Miller, H. Menard, S.M. Bukhari, S.R. Gamble, R.J. Gorte, J. M. Vohs, J.T.S. Irvine, Nat. Commun. 6 (2015) 8120-8127.
DOI URL |
[45] |
J. Xu, M. Wu, Z. Song, Y. Chen, L. Zhang, L. Wang, H. Cai, X. Su, X. Han, S. Wang, W. Long, J. Eur. Ceram. Soc. 41 (2021) 4537-4551.
DOI URL |
[46] |
S. Jo, H.G. Jeong, Y.H. Kim, D. Neagu, J. Myung, Appl. Catal. B 285 (2021) 119828.
DOI URL |
[47] |
J. Tan, D. Lee, J. Ahn, B. Kim, J. Kim, J. Moon, J. Mater. Chem. A 6 (2018) 18133-18142.
DOI URL |
[48] |
X. Xu, W. Wang, W. Zhou, Z. Shao, Small Methods 2 (2018) 1800071.
DOI URL |
[49] |
H. Li, Y. Song, M. Xu, W. Wang, R. Ran, W. Zhou, Z. Shao, Energy Fuels 34 (2020) 11449-11457.
DOI URL |
[50] |
M. Qin, Y. Xiao, H. Yang, T. Tan, Z. Wang, X. Fan, C. Yang, Appl. Catal. B 299 (2021) 120613.
DOI URL |
[51] |
B.K. Park, S.A. Barnett, J. Mater. Chem. A 8 (2020) 11626-11631.
DOI URL |
[52] | M.Y. Lu, R. Scipioni, B.K. Park, T. Yang, Y.A. Chart, S.A. Barnett, Mater. Today Energy 14 (2019) 100362. |
[53] |
M. Qin, T. Tan, K. Li, Z. Wang, H. Yang, Z. Liu, M. Zhou, T. Liu, C. Yang, M. Liu, Int. J. Hydrog. Energy 45 (2020) 21464-21472.
DOI URL |
[54] |
K. Boulahya, D. Muñoz-Gil, A. Gómez-Herrero, M.T. Azcondo, U. Amador, J. Mater. Chem. A 7 (2019) 5601-5611.
DOI |
[55] |
Q. Wang, J. Hou, Y. Fan, X. Xi, J. Li, Y. Lu, G. Huo, L. Shao, X. Fu, J. Luo, J. Mater. Chem. A 8 (2020) 7704-7712.
DOI URL |
[56] |
P. Li, Q. Yang, H. Zhang, M. Yao, F. Yan, D. Fu, Int. J. Hydrog. Energy 45 (2020) 11802-11813.
DOI URL |
[57] |
E. Siebert, C. Roux, A. Boréave, F. Gaillard, P. Vernoux, Solid State Ionics 183 (2011) 40-47.
DOI URL |
[58] |
C.L. Bianchi, Catal. Lett. 76 (2001) 155-159.
DOI URL |
[59] |
D.J. Haynes, D.A. Berry, D. Shekhawat, J.J. Spivey, Catal. Today 155 (2010) 84-91.
DOI URL |
[60] |
B. Niu, C. Lu, W. Yi, S. Luo, X. Li, X. Zhong, X. Zhao, B. Xu, Appl. Catal. B 270 (2020) 118842.
DOI URL |
[61] |
X. Wang, X. Peng, H. Ran, B. Lin, J. Ni, J. Lin, L. Jiang, Ind. Eng. Chem. Res. 57 (2018) 17375-17383.
DOI URL |
[62] |
J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, ACS Appl. Mater. Interfaces 7 (2015) 7406-7412.
DOI URL |
[63] |
Y. Zhang, B. Chen, D. Guan, M. Xu, R. Ran, M. Ni, W. Zhou, R. O'Hayre, Z. Shao, Nature 591 (2021) 246-251.
DOI URL |
[1] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[2] | Xiangchen Kong, Zhenguo Li, Yuankai Shao, Xiaoning Ren, Kaixiang Li, Hanming Wu, Congjie Lv, Cheng Lv, Shengli Zhu. Modulate the superficial structure of La2Ce2O7 catalyst with anchoring CuOx species for the selective catalytic oxidation of NH3 [J]. J. Mater. Sci. Technol., 2022, 111(0): 1-8. |
[3] | Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction [J]. J. Mater. Sci. Technol., 2021, 77(0): 163-168. |
[4] | Wei Kong?, Wenxuan Zhang, Hongyan Huang, Yukun Zhang, Jie Wu, Yu Xu. Analysis of micro-tubular SOFC stability under ambient and operating temperatures [J]. J. Mater. Sci. Technol., 2018, 34(8): 1436-1440. |
[5] | cellHai-Bin Li, Na Xu, Yi-Hua Fang, Hui Fan, Ze Lei, Min-Fang Han. Syngas production via coal char-CO2 fluidized bed gasification and the effect on the performance of LSCFN//LSGM//LSCFN solid oxide fuel cell [J]. J. Mater. Sci. Technol., 2018, 34(2): 403-408. |
[6] | Dandan Ke, Jin Wang, Hongming Zhang, Yuan Li, Lu Zhang, Xin Zhao, Shumin Han. Hydrolytic dehydrogenation of ammonia borane catalyzed by poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets supported Ag0.3Co0.7 nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(12): 2350-2358. |
[7] | Zongying Han, Zhibin Yang, Minfang Han. Cell-protecting regeneration from anode carbon deposition using in situ produced oxygen and steam: A combined experimental and theoretical study [J]. J. Mater. Sci. Technol., 2018, 34(12): 2375-2383. |
[8] | Xu Na, Zhu Tenglong, Yang Zhibin, Han Minfang. Fabrication and optimization of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ electrode for symmetric solid oxide fuel cell with zirconia based electrolyte [J]. J. Mater. Sci. Technol., 2017, 33(11): 1329-1333. |
[9] | Zongying Han, Yuhao Wang, Zhibin Yang, Minfang Han. Electrochemical Properties of Tubular SOFC Based on a Porous Ceramic Support Fabricated by Phase-Inversion Method [J]. J. Mater. Sci. Technol., 2016, 32(7): 681-686. |
[10] | Sang Koo Jeon, Seung Hoon Nahm, OhHeon Kwon. Improvement in the Adhesion Between Electrode of a SOFC and Ag Paste as a Current Collector by Au Deposition [J]. J. Mater. Sci. Technol., 2015, 31(3): 257-263. |
[11] | Fatemeh Heydari, Amir Maghsoudipour, Zohreh Hamnabard, Sajad Farhangdoust. Evaluation on Properties of CaO-BaO-B2O3-Al2O3-SiO2 Glass-Ceramic Sealants for Intermediate Temperature Solid Oxide Fuel Cells [J]. J. Mater. Sci. Technol., 2013, 29(1): 49-54. |
[12] | Xiangfeng Chu, Feng Liu,Weichang Zhu, Yongping Dong, Mingfu Ye, Wenqi Sun. Cobalt-free Composite Ba0.5Sr0.5Fe0.9Ni0.1O3-δ-Ce0.8Sm0.2O2-δ as Cathode for Intermediate-Temperature Solid Oxide Fuel Cell [J]. J. Mater. Sci. Technol., 2012, 28(9): 828-832. |
[13] | Han Chen Kui Cheng Zhicheng Wang Wenjian Weng Ge Shen Piyi Du Gaorong Han. Preparation of Porous NiO-Ce0.8Sm0.2O1.9 Ceramics for Anode-supported Low-temperature Solid Oxide Fuel Cells [J]. J Mater Sci Technol, 2010, 26(6): 523-528. |
[14] | Junwei Wu Xingbo Liu. Recent Development of SOFC Metallic Interconnect [J]. J Mater Sci Technol, 2010, 26(4): 293-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||