J. Mater. Sci. Technol. ›› 2022, Vol. 126: 237-251.DOI: 10.1016/j.jmst.2022.02.027
• Research Article • Previous Articles Next Articles
Yuanjie Fua,d,1, Yao Chengb,1, Yun Cuic,**(
), Yunchang Xinb, Yuyao Zenga, Xiao Liuf, Gang Chena,d,e,*(
)
Received:2021-11-17
Revised:2022-01-20
Accepted:2022-02-06
Published:2022-11-01
Online:2022-11-10
Contact:
Yun Cui,Gang Chen
About author:agang@tju.edu.cn (G. Chen).Yuanjie Fu, Yao Cheng, Yun Cui, Yunchang Xin, Yuyao Zeng, Xiao Liu, Gang Chen. Deformation mechanism of commercially pure titanium under biaxial loading at ambient and elevated temperatures[J]. J. Mater. Sci. Technol., 2022, 126: 237-251.
Fig. 2. Geometry of the specimens used in uniaxial biaxial tensile tests. (a) Sampling direction within rolled CP titanium sheets, (b) geometry of cruciform specimen, and (c) standard dog bone specimen.
Fig. 5. True stress-strain curves for uniaxially and biaxially loaded specimens along (a) RD, (b) TD; θ−σ-σ0.2 curves for uniaxially and biaxially loaded specimens along (c) RD, (d) TD.
| Specimen | σRD0.2 (MPa) | σTD0.2 (MPa) |
|---|---|---|
| Uniaxial | 141 | 174 |
| RT biaxial | 202 | 237 |
| 300 ℃ biaxial | 50 | 63 |
| 400 ℃ biaxial | 45 | 54 |
Table 1. σ0.2 values of the specimens under uniaxial and biaxial loading.
| Specimen | σRD0.2 (MPa) | σTD0.2 (MPa) |
|---|---|---|
| Uniaxial | 141 | 174 |
| RT biaxial | 202 | 237 |
| 300 ℃ biaxial | 50 | 63 |
| 400 ℃ biaxial | 45 | 54 |
Fig. 7. Inverse pole figure maps and twin boundary misorientation maps in (a) area 1 and (b) area 2 of the biaxially deformed TA2 cruciform specimen. Red and green lines indicate {10$\bar{1}$2} extension twins and {11$\bar{2}$2} contraction twins, respectively.
Fig. 8. SEM micrographs for slip trace analysis in (a) area 1 and (b) area 2. The inset shows the contrast between actual slip traces and variant traces of different slip systems calculated by OIM software. Green, yellow, blue, and red thick lines indicate the basal, prismatic, pyramidal Ⅰ, and pyramidal Ⅱ slip traces, respectively.
| Specimen | Multiple slip (%) | Simplex slip (%) |
|---|---|---|
| Biaxial | 42.2 | 57.8 |
| RD uniaxial | 24.8 | 75.2 |
| TD uniaxial | 12.4 | 87.6 |
Table 2. The statistical results of slip trace types at RT.
| Specimen | Multiple slip (%) | Simplex slip (%) |
|---|---|---|
| Biaxial | 42.2 | 57.8 |
| RD uniaxial | 24.8 | 75.2 |
| TD uniaxial | 12.4 | 87.6 |
| Specimen | Basal (%) | Prismatic (%) | Pyramidal Ⅰ (%) | Pyramidal Ⅱ (%) |
|---|---|---|---|---|
| Biaxial | 6.5 | 50.8 | 20.2 | 22.5 |
| RD uniaxial | 0 | 66.4 | 12.7 | 20.9 |
| TD uniaxial | 0 | 72.8 | 12.5 | 14.7 |
Table 3. The statistical results of activated slip systems in simplex slip at RT.
| Specimen | Basal (%) | Prismatic (%) | Pyramidal Ⅰ (%) | Pyramidal Ⅱ (%) |
|---|---|---|---|---|
| Biaxial | 6.5 | 50.8 | 20.2 | 22.5 |
| RD uniaxial | 0 | 66.4 | 12.7 | 20.9 |
| TD uniaxial | 0 | 72.8 | 12.5 | 14.7 |
| Specimen | 300 ℃ | 400 ℃ |
|---|---|---|
| Simplex slip (%) | 37.6 | 40.5 |
| Multiple slip (%) | 14.8 | 30.3 |
| Cross-slip (%) | 32.4 | 5.7 |
| M&C (%) | 15.2 | 23.5 |
Table 4. Statistical results of slip trace types in TA2 specimens biaxially deformed at 300 ℃ and 400 ℃.
| Specimen | 300 ℃ | 400 ℃ |
|---|---|---|
| Simplex slip (%) | 37.6 | 40.5 |
| Multiple slip (%) | 14.8 | 30.3 |
| Cross-slip (%) | 32.4 | 5.7 |
| M&C (%) | 15.2 | 23.5 |
| Specimen | 300 ℃ | 400 ℃ |
|---|---|---|
| Basal (%) | 5.8 | 3.2 |
| Prismatic (%) | 74.7 | 57.4 |
| Pyramidal Ⅰ (%) | 42.3 | 50.6 |
| Pyramidal Ⅱ (%) | 40.2 | 29.7 |
Table 5. Statistical results of activated slip systems in multiple slip, cross-slip, and M&C of TA2 specimens biaxially deformed at 300 ℃ and 400 ℃.
| Specimen | 300 ℃ | 400 ℃ |
|---|---|---|
| Basal (%) | 5.8 | 3.2 |
| Prismatic (%) | 74.7 | 57.4 |
| Pyramidal Ⅰ (%) | 42.3 | 50.6 |
| Pyramidal Ⅱ (%) | 40.2 | 29.7 |
Fig. 9. Inverse pole figure maps and SEM micrographs for slip trace analysis of TA2 specimens that were biaxially deformed at (a) 300 ℃ and (b) 400 ℃. The inset shows the cross-slip at 300 ℃.
Fig. 10. (a) Changes in the percentages of multiple slip and cross-slip with temperature, (b) changes in the percentages of different slip systems with temperature, and (c) the percentages of M&C at 300 ℃ and 400 ℃.
Fig. 11. Twin boundary misorientation maps and GSF distribution diagrams of the grain matrices with activated (a) {11$\bar{2}$2} contraction twins and (c) {10$\bar{1}$2} extension twins. Inverse pole figures of the orientation of the grain matrices that activate (b) {11$\bar{2}$2} contraction twins and (d) {10$\bar{1}$2} extension twins.
Fig. 12. Bright-field and WBDF TEM images of the specimen biaxially deformed at RT: (a) bright-field image of dislocations with B = [2$\bar{1}$$\bar{1}$0], (b) WBDF micrographs with g = (000$\bar{2}$), (c) WBDF micrographs with g = (01$\bar{1}$0).
Fig. 13. SEM micrographs and GSF distribution diagrams of the specimen biaxially deformed at 400 ℃: for (a) {10$\bar{1}$2} grains and (c) {11$\bar{2}$2} grains. Inverse pole figures of (b) {10$\bar{1}$2} grains and (d) {11$\bar{2}$2} grains.
Fig. 14. SEM micrographs of the specimen biaxially deformed at 400 ℃ for (a) slip trace analysis and (b) cross-slip research. The orientations of the {10$\bar{1}$2} grains are illustrated in (c) the inverse pole figure.
Fig. 15. Schematics showing the process of cross-slip activation in 400 ℃ biaxial deformation. Firstly, (a) prismatic and pyramidal Ⅰ slips are activated and (b) form multiple slip. The self-interaction of multiple slip (c) activated pyramidal slips and (d) cross-slip are generated in stress concentration areas.
Fig. 16. Bright-field TEM images of the specimen biaxially deformed at 400 ℃. (a) The image of dislocations with B = [0001]. The dislocations imaged in two-beam conditions by using the diffraction vectors (b) g1 =($\bar{1}$100), (c) g2 = (01$\bar{1}$0), and (d) g3 = (10$\bar{1}$0).
Fig. 17. (a) Image quality map and (b) inverse pole figure maps for slip trace analysis of TA2 specimens that were biaxially deformed at 300 ℃ for slip trace analysis.
Fig. 18. Schematics of the differences of cross-slip activation under biaxial deformation at (a) 300 ℃ and (b) 400 ℃. Cross-slip traces are marked by red and blue dotted lines.
Fig. 19. Bright-field and WBDF TEM images of the biaxially deformed specimen at 300 ℃, the grain is tilted to B = [01$\bar{1}$0]. (a, c) Bright-field images of <c> dislocations in the two-beam condition with g = (000$\bar{2}$). (b, d) WBDF images of <c> dislocations in the two-beam condition with g = (000$\bar{2}$).
| [1] | T.H. Ma, L. Chang, S. Guo, L.R. Kong, X.H. He, C.Y. Zhou, Int. J. Fatigue, 140 (2020), Article 105818. |
| [2] | H.W. Li, X.L. Zhang, J.Y. Chen, J.S. Li, Trans. Nonferrous Met. Soc. China, 23 (1) (2013), pp. 23-31. |
| [3] | Z. Tang, J. Chen, K. Dang, G. Liu, K. Tao, J. Mater. Process. Technol., 278 (2020), Article 116492. |
| [4] | N. Srinivasan, R. Velmurugan, S.K. Singh, B. Pant, R. Kumar, Mater. Charact., 164 (2020), Article 110349. |
| [5] | T.H. Ma, N. Gao, L. Chang, X.H. He, C.Y. Zhou, Eng. Fract. Mech., 254 (2021), Article 107930. |
| [6] | N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, A. Fatemi, Int. J. Fatigue, 32 (11) (2010), pp. 1862-1874. |
| [7] | J.B. Zhou, P.Y. Sun, C.Y. Zhou, X.H. He, J. Iron Steel Res. Int., 26 (2019), pp. 91-101. |
| [8] | T. Kameyama, T. Matsunaga, E. Sato, K. Kuribayashi, Mater.Sci. Eng. A, 510-511 (2009), pp. 364-367. |
| [9] | T. Hama, A. Kobuki, H. Takuda, Int. J. Plast., 91 (2017), pp. 77-108. |
| [10] | L. Gangling, Z. Xiaoying, L. Jinxiang, S. Yufeng, H. Liwen, L. Runze, R. Jiatao,, Mechanical Behaviour of Materials VI, Pergamon, Oxford, 1992, pp. 721-725. |
| [11] | N. Srinivasan, R. Velmurugan, R. Kumar, S.K. Singh, B. Pant, Mater.Sci. Eng. A, 674 (2016), pp. 540-551. |
| [12] | M. Ishiki, T. Kuwabara, Y. Hayashida, Int. J. Mater. Form., 4 (2011), pp. 193-204. |
| [13] | T. Kuwabara, Int. J. Plast., 23 (2007), pp. 385-419. |
| [14] | Y. Fu, Y. Cheng, Y. Cui, Y. Xin, S. Shi, G. Chen, J. Magn. Alloys, 10 (2) (2022), pp. 478-491. |
| [15] | B. Song, R. Xin, A. Liao, W. Yu, Q. Liu, Mater.Sci. Eng. A, 627 (2015), pp. 369-373. |
| [16] | S. Wang, G. Jin, Y. Wu, X. Liu, G. Chen, J. Mater. Sci. Technol., 90 (2021), pp. 108-120. |
| [17] | P. Lin, Y. Hao, B. Zhang, S. Zhang, C. Chi, J. Shen, Mater.Sci. Eng. A, 707 (2017), pp. 172-180. |
| [18] | D.K. Liu, G.S. Huang, G.L. Gong, G.G. Wang, F.S. Pan, Trans. Nonferrous Met. Soc. China, 27 (2017), pp. 1306-1312. |
| [19] | B.R. Anne, Y. Okuyama, T. Morikawa, M. Tanaka, Mater.Sci. Eng. A, 798 (2020), Article 140211. |
| [20] | V.M. Imayev, R.A. Gaisin, R.M. Imayev, Mater.Sci. Eng. A, 639 (2015), pp. 691-698. |
| [21] | H. Shahmir, P.H.R. Pereira, Y. Huang, T.G. Langdon, Mater.Sci. Eng. A, 669 (2016), pp. 358-366. |
| [22] | V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev, Mater.Sci. Eng. A, 303 (2001), pp. 82-89. |
| [23] | X.L. Zhang, H. Yang, H. Li, Z.Y. Zhang, L. Li, Trans. Nonferrous Met. Soc. China, 24 (2014), pp. 3257-3264. |
| [24] | A. Orozco-Caballero, F. Li, D. Esqué-de los Ojos, M.D. Atkinson, J. Quinta da Fonseca, Acta Mater, 149 (2018), pp. 1-10. |
| [25] | P. Rodriguez-Calvillo, J.M. Cabrera, Mater.Sci. Eng. A, 625 (2015), pp. 311-320. |
| [26] | M.V. Upadhyay, T. Panzner, S. Van Petegem, H. Van Swygenhoven, Exp. Mech., 57 (2017), pp. 905-920. |
| [27] | J.C. Williams, R.G. Baggerly, N.E. Paton, Metall. Mater. Trans. A, 33 (2002), pp. 837-850. |
| [28] | J.A. del Valle, F. Carreño, O.A. Ruano, Acta Mater, 54 (2006), pp. 4247-4259. |
| [29] | X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Mater.Sci. Eng. A, 488 (2008), pp. 214-220. |
| [30] | L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.S. Park, J. Lind, R.M. Suter, T.R. Bieler, Acta Mater., 132 (2017), pp. 598-610. |
| [31] | Y. Cheng, Y. Fu, Y. Xin, G. Chen, P. Wu, X. Huang, Q. Liu, Int. J. Plast., 132 (2020), Article 102754. |
| [32] | H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, M.A. Crimp, Acta Mater., 61 (2013), pp. 7555-7567. |
| [33] | B. Li, Q.W. Zhang, S.N. Mathaudhu, Scr. Mater., 134 (2017), pp. 37-41. |
| [34] | J. Li, Y. Cui, H. Wu, G. Chen, Mater.Sci. Eng. A, 771 (2020), Article 138593. |
| [35] | F. Xu, R.A. Holt, M.R. Daymond, J. Nucl. Mater., 394 (2009), pp. 9-19. |
| [36] | R. Sperry, S. Han, Z. Chen, S.H. Daly, M.A. Crimp, D.T. Fullwood, Mater. Charact., 173 (2021), Article 110941. |
| [1] | Junhui Tang, Ahmed Zorgati, Jean-Baptiste Gaillard, Philippe Vermaut, Frédéric Prima, Fan Sun. Twinning-induced plasticity (TWIP) effect in multi-phase metastable beta Zr-Nb alloys [J]. J. Mater. Sci. Technol., 2023, 139(0): 120-125. |
| [2] | Rui Ma, Xiping Guo. Cooperative effects of Mo, V and Zr additions on the microstructure and properties of multi-elemental Nb-Si based alloys [J]. J. Mater. Sci. Technol., 2023, 132(0): 27-41. |
| [3] | Bo Meng, Jinlong Wang, Lanlan Yang, Minghui Chen, Shenglong Zhu, Fuhui Wang. On the rumpling mechanism in nanocrystalline coatings: Improved by reactive magnetron sputtering with oxygen [J]. J. Mater. Sci. Technol., 2023, 132(0): 69-80. |
| [4] | Xiaotian Duan, Tiezhuang Han, Xiao Guan, Yuning Wang, Huhu Su, Kaisheng Ming, Jing Wang, Shijian Zheng. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates [J]. J. Mater. Sci. Technol., 2023, 136(0): 97-108. |
| [5] | Qinglong Liu, Junyu Tian, Wenting Wei. A model for converting thermal analysis to volume fraction of high carbon bearing steels during low-temperature tempering [J]. J. Mater. Sci. Technol., 2023, 136(0): 212-222. |
| [6] | Yanfang Wang, Xin Lin, Yufan Zhao, Zihong Wang, Xiaobin Yu, Xuehao Gao, Weidong Huang. Laser powder bed fusion of Zr-modified Al-Cu-Mg alloy: Processability and elevated-temperature mechanical properties [J]. J. Mater. Sci. Technol., 2023, 136(0): 223-235. |
| [7] | Shuo Wang, Xianghai Yang, Junsheng Wang, Chi Zhang, Chengpeng Xue. Identifying the crystal structure of T1 precipitates in Al-Li-Cu alloys by ab initio calculations and HAADF-STEM imaging [J]. J. Mater. Sci. Technol., 2023, 133(0): 41-57. |
| [8] | Zhaoqi Niu, Yi Xin, Luyao Wang, Shuai Shen, Xiaoyan Ma, Beixi Chen, Chengzhi Wang, Fang Chen, Chengshuang Zhang, Xiao Hou. Two birds with one stone: Construction of bifunctional-POSS hybridized boron-silicon ceramicized phenolic composites and its ablation behavior [J]. J. Mater. Sci. Technol., 2023, 141(0): 199-208. |
| [9] | Wenyao Sun, Minghui Chen, Fuhui Wang. Effect of oxygen doping on the corrosion behavior of nanocrystalline coating under the synergy of solid NaCl deposit and water vapor [J]. J. Mater. Sci. Technol., 2023, 141(0): 257-268. |
| [10] | Wenbin Liu, Ting Zheng, Xuezheng Ruan, Zhenyong Man, Haoyue Xue, Laiming Jiang, Fuping Zhang, Guorong Li, Jiagang Wu. Synergy of lead vacancies and morphotropic phase boundary to promote high piezoelectricity and temperature stability of PBZTN ceramics [J]. J. Mater. Sci. Technol., 2023, 137(0): 1-7. |
| [11] | Man Zhang, Vladimir Koval, Yu Shi, Yajun Yue, Chenglong Jia, Jiagang Wu, Giuseppe Viola, Haixue Yan. Magnetoelectric coupling at microwave frequencies observed in bismuth ferrite-based multiferroics at room temperature [J]. J. Mater. Sci. Technol., 2023, 137(0): 100-103. |
| [12] | Panpan Zhao, Markus Gusenbauer, Harald Oezelt, Daniel Wolf, Thomas Gemming, Thomas Schrefl, Kornelius Nielsch, Thomas George Woodcock. Nanoscale chemical segregation to twin interfaces in τ-MnAl-C and resulting effects on the magnetic properties [J]. J. Mater. Sci. Technol., 2023, 134(0): 22-32. |
| [13] | Tianwei Liu, Lunwei Liang, Dierk Raabe, Lanhong Dai. The martensitic transition pathway in steel [J]. J. Mater. Sci. Technol., 2023, 134(0): 244-253. |
| [14] | Yue Ren, Tingyi Yan, Zhuobin Huang, Qing Zhou, Ke Hua, Xiaolin Li, Yin Du, Qian Jia, Long Zhang, Haifeng Zhang, Haifeng Wang. Cryogenic wear behaviors of a metastable Ti-based bulk metallic glass composite [J]. J. Mater. Sci. Technol., 2023, 134(0): 33-41. |
| [15] | Yabin Jiang, Chi Cao, Yueyang Tan, Qianwen Chen, Lei Zeng, Wensheng Yang, Zongzhao Sun, Limin Huang. A facile method to introduce a donor-acceptor system into polymeric carbon nitride for efficient photocatalytic overall water splitting [J]. J. Mater. Sci. Technol., 2023, 141(0): 32-41. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
