J. Mater. Sci. Technol. ›› 2022, Vol. 120: 159-166.DOI: 10.1016/j.jmst.2022.01.007
• Research Article • Previous Articles Next Articles
Sheng-Bo Wanga,1, Qing Rana,1, Wu-Bin Wana,1, Hang Shia, Shu-Pei Zenga, Zi Wena, Xing-You Langa,b,*(
), Qing Jianga,*(
)
Received:2021-11-21
Revised:2021-12-21
Accepted:2022-01-05
Published:2022-09-01
Online:2022-03-09
Contact:
Xing-You Lang,Qing Jiang
About author:jiangq@jlu.edu.cn (Q. Jiang).1 These authors contributed equally to this work.
Sheng-Bo Wang, Qing Ran, Wu-Bin Wan, Hang Shi, Shu-Pei Zeng, Zi Wen, Xing-You Lang, Qing Jiang. Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides[J]. J. Mater. Sci. Technol., 2022, 120: 159-166.
Fig. 1. Schematic and microstructure characterization. (a) Schematic showing the AR-ZIMBs that are constructed by electrodepositing layered bipolar vanadium oxides with hydrated metal-ion preintercalation (MxV2O5, M = Li, Na, K, Mg, Zn) on 3D nanoporous Au current microcollectors. Inset: Crystal structure of preintercalated vanadium oxides viewed along the [110] direction. (b) Typical SEM image of interdigital-patterned nanoporous Au current microcollectors. (c) Representative cross-sectional SEM image of nanoporous ZnxV2O5/Au microelectrodes. (d) Lattice-resolved HRTEM image of the constituent layered vanadium oxide with hydrated Zn2+ preintercalation, showing the 0.3467 nm distance of the (004) planes of crystalline ZnxV2O5. Inset: the FFT patterns of ZnxV2O5. (e) XRD patterns of layered vanadium oxides that are preintercalated with hydrated Li+, Na+, K+, Mg2+, Zn2+ ions. (f) Interlayer spacing values of vanadium oxides preintercalated with different hydrated Li+, Na+, K+, Mg2+, Zn2+ cations as a function of their hydrated ion diameters. Comparison for the ratio (h/d) of the interlayer spacing (h) and the diameter of hydrated metal ions (d).
Fig. 2. Compatibility between cation-preintercalated vanadium oxides and electrolytes. (a) Representative CV curves for nanoporous MxV2O5/Au (M = Li, Na, K, Mg and Zn) microelectrodes in 1 M ZnSO4 electrolyte. Scan rate: 50 mV s-1. Potential range: -0.8 to 0 V versus Ag/AgCl. (b) Specific capacities of nanoporous MxV2O5/Au (M = Li, Na, K, Mg and Zn) microelectrodes in Li2SO4, Na2SO4, K2SO4, MgSO4 and ZnSO4 electrolytes, respectively, at a scan rate of 10 mV s-1. (c) EIS spectra of nanoporous ZnxV2O5/Au microelectrodes in Li2SO4, Na2SO4, K2SO4, MgSO4 and ZnSO4 electrolyte. Inset: A magnification of EIS at the high-frequency range. (d) Specific capacities of nanoporous MxV2O5/Au (M = Li, Na, K, Mg and Zn) microelectrodes as a function of the h/d ratio, reaching their maximum values at h/d = ~1.6.
Fig. 3. Electrochemical properties and mechanism of nanoporous ZnxV2O5/Au microelectrodes. (a) Comparison of CV curves for nanoporous ZnxV2O5/Au, MgxV2O5/Au, KxV2O5/Au, NaxV2O5/Au and LixV2O5/Au microelectrodes in ZnSO4, MgSO4, K2SO4, Na2SO4 and Li2SO4 electrolytes, respectively. Scan rates: 50 mV s-1. Potential window: -0.8-0 V versus Ag/AgCl. (b) Comparison of volumetric capacities for nanoporous MxV2O5/Au (M = Li, Na, K, Mg, Zn) microelectrodes at various scan rates in their corresponding ZnSO4, MgSO4, Li2SO4, Na2SO4 and K2SO4 electrolytes. (c) b-value determination of the cathodic peak currents in a wide scan-rate range: b = ~0.88 up to 50 mV s-1, and b = ~0.5 for v > 50 mV s-1. (d) Normalized capacity versus v-1/2 allows for the separation of diffusion-controlled capacity from capacitive-controlled capacity.
Fig. 4. Electrochemical performance of AR-ZIMBs. (a) Representative CV curves for nanoporous ZnxV2O5/Au microelectrodes working as anode and cathode in -0.8 to 0 V and 0-0.8 V (versus Ag/AgCl) in 1 M ZnSO4 aqueous electrolyte, respectively. Scan rate: 10 mV s-1. (b) Comparison of representative CV curves for AR-ZIMBs based on nanoporous ZnxV2O5/Au or V2O5/Au microelectrodes in a voltage window of 0-1.6 V at the scan rate of 10 mV s-1. Electrolyte: 1 M ZnSO4. (c) Charge/discharge voltage profiles of ZnxV2O5/Au AR-ZIMBs in a voltage window of 0-1.6 V at various current densities. (d) Charge/discharge voltage profiles of V2O5/Au AR-ZIMBs in a voltage window of 0-1.6 V at various current densities. (e) Comparison of stack capacities for ZnxV2O5/Au and V2O5/Au AR-ZIMBs at various current densities. (f) Ragone plot comparing stack power and energy densities of ZnxV2O5/Au AR-ZIMB with NiSn-LMO LIMB and microbattery cells having 3D electrodes (MB1, MB2 and MB3) [7,8], capacitive MSCs based on onion-like carbon, graphene/carbon nanotube fibers, activated carbon (AC) [12,13], and pseudocapacitive LSG/MnO2 [15], as well as commercial 4 V/500 μAh Li thin film battery (LTFB) [12,13] and Sony CR1620 [7].
| [1] |
Z.L. Wang, Adv. Mater. 24 (2012) 280-285.
DOI URL |
| [2] |
H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Nat. Rev. Mater. 2 (2017) 17023.
DOI URL |
| [3] |
S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.H. Kim, Adv. Mater. 28 (2016) 4203-4218.
DOI URL |
| [4] |
M. Beidaghi, Y. Gogotsi, Energy Environ. Sci. 7 (2014) 867-884.
DOI URL |
| [5] |
N.A. Kyeremateng, T. Brousse, D. Pech, Nat. Nanotechnol. 12 (2017) 7-15.
DOI URL PMID |
| [6] |
S. Zheng, X. Shi, P. Das, Z.S. Wu, X. Bao, Adv. Mater. 31 (2019) 1900583.
DOI URL |
| [7] |
J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, W.P. King, Nat. Commun. 4 (2013) 1732.
DOI URL |
| [8] | H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu, J. Wang, J.A. Rogers, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 6573-6578. |
| [9] |
Z. Lyu, G.J.H. Lim, J. Koh, Y. Li, Y. Ma, J. Ding, J. Wang, Z. Hu, J. Wang, W. Chen, Y. Chen, Joule 5 (2021) 1-26.
DOI URL |
| [10] |
P. Sun, X. Li, J. Shao, P.V. Braun, Adv. Mater. 33 (2020) 2006229.
DOI URL |
| [11] |
J.I. Hur, L.C. Smith, B. Dunn, Joule 2 (2018) 1187-1201.
DOI URL |
| [12] |
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Nat. Nanotechnol. 5 (2010) 651-654.
DOI URL |
| [13] | D. Yu, K. Goh, H. Wang, Li Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat. Nan- otechnol. 9 (2014) 555-562. |
| [14] |
P. Huang, C. Lethien, S. Pinaud, K. Brousser, R. Laloo, V. Turq, M. Respaud, A. Demortiere, B. Daffos, P.L. Taberna, B. Chaudret, Y. Gogotsi, P. Simon, Sci- ence 351 (2016) 691-695.
DOI URL |
| [15] | M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T. Lech, R.B. Kaner, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 4233-4238. |
| [16] |
P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930-2946.
DOI URL |
| [17] |
Y. Liu, Y. Zhu, Y. Cui, Nat. Energy 4 (2019) 540-550.
DOI URL |
| [18] |
J.Y. Luo, W.J. Cui, P. He, Y.Y. Xia, Nat. Chem. 2 (2010) 760-765.
DOI URL |
| [19] |
H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Chem. Rev. 114 (2014) 11788-11827.
DOI URL |
| [20] |
Z. Li, D. Young, K. Xiang, W.C. Carter, Y.M. Chiang, Adv. Energy Mater. 3 (2013) 290-294.
DOI URL |
| [21] |
Z. Guo, Y. Zhao, X. Ding, X. Dong, L. Chen, J. Cao, C. Wang, Y. Xia, H. Peng, Y. Wang, Chem 3 (2017) 348-362.
DOI URL |
| [22] |
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.S. Hu, Nat. Energy 4 (2019) 495-503.
DOI URL |
| [23] |
Y.Q. Li, H. Shi, S.B. Wang, Y.T. Zhou, Z. Wen, X.Y. Lang, Q. Jiang, Nat. Commun. 10 (2019) 4292.
DOI URL |
| [24] |
D. Su, A. McDonagh, S.Z. Qiao, G. Wang, Adv. Mater. 29 (2017) 1604007.
DOI URL |
| [25] |
Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong, S. Tan, Q. Wei, J. Lu, J. Li, Q. An, L. Mai, Chem 5 (2019) 1194-1209.
DOI URL |
| [26] |
X. Sun, V. Duffort, B.L. Mehdi, N.D. Browning, L.F. Nazar, Chem. Mater. 28 (2016) 534-542.
DOI URL |
| [27] |
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Angew. Chem. Int. Ed. 57 (2018) 2943-2948.
DOI URL |
| [28] |
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, Nat. Energy 1 (2016) 16119.
DOI URL |
| [29] |
X. Zang, L. Li, J. Meng, L. Liu, Y. Pan, Q. Shao, N. Cao, J. Mater. Sci. Technol. 74 (2021) 52-59.
DOI URL |
| [30] |
G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 3 (2018) 2480-2501.
DOI URL |
| [31] |
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Chem. Rev. 120 (2020) 7795-7866.
DOI URL |
| [32] |
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 49 (2020) 4203-4219.
DOI URL PMID |
| [33] |
S. Chen, Y. Zhang, H. Geng, Y. Yang, X. Rui, C.C. Li, J. Power Sources 441 (2019) 227192.
DOI URL |
| [34] |
X. Gao, H. Zhang, X. Liu, X. Lu, Carbon Energy 2 (2020) 387-407.
DOI URL |
| [35] |
C. Bai, F. Cai, L. Wang, S. Guo, X. Liu, Z. Yuan, Nano Res 11 (2018) 3548-3554.
DOI URL |
| [36] |
Y. Yu, J. Xie, H. Zhang, R. Qin, X. Liu, X. Lu, Small Sci. 1 (2021) 2000066.
DOI URL |
| [37] |
W. Jiang, H. Shi, X. Xu, J. Shen, Z. Xu, R. Hu, Energy Environ. Mater. 4 (2021) 603-610.
DOI URL |
| [38] |
G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J.F. Drillet, S. Passerini, R. Hahn, Adv. Mater. 28 (2016) 7564-7579.
DOI URL |
| [39] |
W. Li, J.R. Dahn, D.S. Wainwright, Science 264 (1994) 1115-1158.
URL PMID |
| [40] |
C. Yang, J. Chen, T. Qing, X. Fan, W. Sun, A. Cresce, M.S. Ding, O. Borodin, J. Vatamanu, M.A. Schroeder, N. Eidson, C. Wang, K. Xu, Joule 1 (2017) 122-132.
DOI URL |
| [41] |
D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang, Q. Gu, K. Davey, L. Gu, S.Z. Qiao, Adv. Mater. 32 (2021) 2001894.
DOI URL |
| [42] |
W. Zou, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X.W. Lou, Energy Environ. Sci. 9 (2016) 2881-2891.
DOI URL |
| [43] |
D.W. Smith, J. Chem. Educ. 54 (1977) 540-542.
DOI URL |
| [44] |
E.R. Nightingale, J. Phys. Chem. 63 (1959) 1381-1387.
DOI URL |
| [45] |
A. Esfandiar, B. Radha, F.C. Wang, Q. Yang, S. Hu, S. Garaj, R.R. Nair, A.K. Geim, K. Gopinadhan, Science 358 (2017) 511-513.
DOI URL PMID |
| [46] |
Y. Yuan, C. Zhan, K. He, H. Chen, W. Yao, S. Sharifi-Asl, B. Song, Z. Yang, A. Nie, X. Luo, H. Wang, S.M. Wood, K. Amine, M.S. Islam, J. Lu, R. Shahbazian-Yassar, Nat. Commun. 7 (2016) 13374.
DOI URL |
| [47] |
D.S. Charles, M. Feygenson, K. Page, J. Neuefeind, W. Xu, X. Teng, Nat. Commun. 8 (2017) 15520.
DOI URL PMID |
| [48] |
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yang, Adv. Mater. 30 (2018) 1703725.
DOI URL |
| [49] |
H. Tang, F. Xiong, Y. Jiang, C. Pei, S. Tan, W. Yang, M. Li, Q. An, L. Mai, Nano Energy 58 (2019) 347-354.
DOI URL |
| [50] | F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, ACS En- ergy Lett. 3 (2018) 2602-2609. |
| [51] |
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou, S. Liang, Energy Environ. Sci. 11 (2018) 3157-3162.
DOI URL |
| [52] |
X. Yao, X. Zhao, F.A. Castro, L. Mai, ACS Energy Lett. 4 (2019) 771-778.
DOI URL |
| [53] |
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Nat. Commun. 9 (2018) 2906.
DOI URL |
| [54] |
T. Hu, J. Sun, Y. Zhang, Y. Liu, H. Jiang, X. Dong, J. Zheng, C. Meng, C. Huang, J. Mater. Sci. Technol. 83 (2021) 7-17.
DOI URL |
| [55] |
Y. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 5 (2020) 646-656.
DOI URL |
| [56] |
F. Wang, Z. Niu, Angew. Chem. Int. Ed. 58 (2019) 16358-16367.
DOI URL |
| [57] |
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410 (2001) 450-453.
DOI URL |
| [58] |
Y.Q. Li, X.M. Shi, X.Y. Lang, Z. Wen, J.C. Li, Q. Jiang, Adv. Funct. Mater. 26 (2016) 1830-1839.
DOI URL |
| [59] | M. Clites, E. Pomerantseva, Energy Storage Mater. 11 (2018) 30-37. |
| [60] |
M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi, M.W. Barsoum, Chem. Mater. 28 (2016) 3507-3514.
DOI URL |
| [61] |
M. Clites, J.L. Hart, M.L. Taheri, E. Pomerantseva, ACS Energy Lett. 3 (2018) 562-567.
DOI URL |
| [62] |
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao, F. Cheng, ACS Energy Lett. 3 (2018) 1366-1372.
DOI URL |
| [63] |
G.S. Gautam, P. Canepa, R. Malik, M. Liu, K. Persson, G. Ceder, Chem. Commun. 51 (2015) 13619-13622.
DOI URL |
| [64] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518-522.
DOI URL |
| [65] |
B.T. Liu, X.M. Shi, X.Y. Lang, L. Gu, Z. Wen, M. Zhao, Q. Jiang, Nat. Commun. 9 (2018) 1375.
DOI URL |
| [66] |
S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen, M. Zhao, X.Y. Lang, Q. Jiang, Nat. Commun. 11 (2020) 1634.
DOI URL |
| [1] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
| [2] | Dianguo Ma, Yingmin Wang, Yanhui Li, Umetsu Rie Y., Shuli Ou, Kunio Yubuta, Wei Zhang. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing [J]. J. Mater. Sci. Technol., 2020, 36(0): 128-133. |
| [3] | Xianglong Lu, Tianshui Yu, Hailing Wang, Lihua Qian, Ruichun Luo, Pan Liu, Yao Yu, Lin Liu, Pengxiang Lei, Songliu Yuan. Nanoporous Au-Sn with solute strain for simultaneously enhanced selectivity and durability during electrochemical CO2 reduction [J]. J. Mater. Sci. Technol., 2020, 43(0): 154-160. |
| [4] | Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd [J]. J. Mater. Sci. Technol., 2020, 48(0): 123-129. |
| [5] | Chaoyang Wang, Shengli Zhu, Yanqin Liang, Zhenduo Cui, Shuilin Wu, Chunling Qin, Shuiyuan Luo, Akihisa Inoue. Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects [J]. J. Mater. Sci. Technol., 2020, 53(0): 91-101. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
