J. Mater. Sci. Technol. ›› 2022, Vol. 97: 1-9.DOI: 10.1016/j.jmst.2021.04.041
• Research Article • Next Articles
Guoyin Chena, Weiming Wanga, Xin Lua, Innocent Tendo Mugaanirea, Yang Zhanga, Yulu Aia, Kai Houa,*(), Benjamin S. Hsiaoa,b, Meifang Zhua
Received:
2021-02-24
Revised:
2021-04-17
Accepted:
2021-04-17
Published:
2021-06-17
Online:
2021-06-17
Contact:
Kai Hou
About author:
* E-mail address: houkai711@dhu.edu.cn (K. Hou).Guoyin Chen, Weiming Wang, Xin Lu, Innocent Tendo Mugaanire, Yang Zhang, Yulu Ai, Kai Hou, Benjamin S. Hsiao, Meifang Zhu. Homogeneous intercalated graphene/manganic oxide hybrid fiber electrode assembly by non-liquid-crystal spinning for wearable energy storage[J]. J. Mater. Sci. Technol., 2022, 97: 1-9.
Fig. 1. (a) Normal optical microscope images and (b) corresponding POM images of GO/MnOX-30 dispersion; (c) Normal optical microscope images and (d) corresponding POM images of basified GO/MnOX-30 dispersion; (e) Dependence of the viscosity of the pristine and basified GO/MnOX-30 dispersion on the shear rate, inset is a photograph of pristine and basified GO/MnOX-30 dispersion.
Fig. 2. (a) Schematic illustration of fabricating GO and GO/MnOX hybrid fiber; (b) Surface morphology, (c) sectional morphology, and (d) TEM image of the GO/MnOX-30 fiber; (e) A bobbin of fabricated GO/MnOX-30 fiber.
Fig. 4. Structural analysis of rGO/MnOX hybrid fibers. (a) EDS mapping of rGO/MnOX-30 fiber, (b) Mn 2p, and (c) C 1 s XPS core level spectra of GO, rGO, GO/MnOX-20, and rGO/MnOX-20, respectively.
Fig. 5. (a) Typical tensile stress-strain curves of the rGO and rGO/MnOX hybrid fibers, (b) tensile strength, and tensile strain of the neat rGO and rGO/MnOX hybrid fibers obtained from mechanical tests; (c) Conductivity of neat rGO and rGO/MnOX hybrid fibers.
Fig. 6. Electrochemical properties of the fabricated rGO and rGO/MnOX hybrid fibers: (a) CV curves of LC rGO/MnOX-20 and NLC rGO/MnOX-20 at 10 mV s-1; (b) Schematic illustrating of nanoparticle dispersion within rGO matrix; (c) CV curves of rGO and rGO/MnOX hybrid fibers at 10 mV s-1; (d) CV curves of rGO/MnOX-20 fibers at different scan rate; (e) Mass-based capacitance calculated from related CV curves in d; (f) GCD curves and (g) related specific capacitance of rGO/MnOX-20 fibers; (h) EIS of all the fibers.
Fig. 7. (a) Photos and (b) components of the fabricated fiber-shaped all-solid-state supercapacitor; (c) fiber-shaped all-solid-state supercapacitor woven into a fabric; (d) CV curves of the device at different scan rate; (e) GCD curves and (f) mass- or volume-based capacitance of the device at different current density; (g) Bending stability of the device; (h) Cycle behavior of capacitance and coulombic efficiency change during the GCD cycling at 1.0 A g-1; (i) Comparison of the power density and energy density with other work, such like Li thin film battery, 2.75 V/44 mF commercial AC supercapacitor, MnO2 carbon fiber supercapacitor, 5.5 V/100 mF commercial supercapacitor.
[1] | Z. Xu, C. Gao. Mater, Today 18 (2015) 480-492. |
[2] |
Z. Zhou, C.Y. Ding, W.C. Peng, Y. Li, F.B. Zhang, X.B. Fan, J. Mater. Sci. Technol. 80 (2021) 13-19.
DOI |
[3] |
B. Wang, Q. Wu, H. Sun, J. Zhang, J. Ren, Y. Luo, M. Wang, H. Peng, J. Mater. Chem. A 5 (2017) 925-930.
DOI URL |
[4] |
D.S. Yu, K.L. Goh, L.W H. Wang, W.C. Jiang, Q. Zhang, L.M. Dai, Y. Chen, Nat. Nanotechnol. 9 (2014) 555-562.
DOI URL |
[5] |
Z.S. Wu, X. Feng, H.M. Cheng, Natl. Sci. Rev. 1 (2014) 277-292.
DOI URL |
[6] | W. Weng, J.J. Yang, Y. Zhang, Y.X. Li, S.Y. Yang, L.P. Zhu, M.F. Zhu, Adv. Mater.(2019) e1902301. |
[7] |
B. Zheng, T. Huang, L. Kou, X. Zhao, K. Gopalsamy, C. Gao, J. Mater. Chem. A 2 (2014) 9736-9743.
DOI URL |
[8] |
Q.W. Shi, J.Q. Sun, C.Y. Hou, Y.G. Li, Q.H. Zhang, H.Z. Wang, Adv. Fiber Mater. 1 (2019) 3-31.
DOI URL |
[9] |
B.J. Wang, X. Fang, H. Sun, S.S. He, J. Ren, Y. Zhang, H.S. Peng, Adv. Mater. 27 (2015) 7854-7860.
DOI URL |
[10] |
H. Sun, S.L. Xie, Y.M. Li, Y.S. Jiang, X.M. Sun, B.J. Wang, H.S. Peng, Adv. Mater. 28 (2016) 8431-8438.
DOI URL |
[11] |
L. Wang, X.M. Fu, Q.He J, X. Shi, T.Q. Chen, P.N. Chen, B.J. Wang, H.S. Peng, Adv. Mater. 32 (2020) 1901971.
DOI URL |
[12] |
J. Ma, S.C. Tang, J.A. Syeda, D.Y. Suc, X.K. Meng, J Mater. Sci. Technol. 34 (2018) 1103-1109.
DOI URL |
[13] |
P.P. Shi, L. Li, L. Hua, Q.Q. Qian, P.F. Wang, J.Y. Zhou, G.Z. Sun, W. Huang, ACS Nano 11 (2017) 444-452.
DOI URL |
[14] |
W.J. Ma, M. Li, J.H.Li X.Zhou, Y.M. Dong, M.F. Zhu, ACS Appl. Mater. Interfaces 11 (2019) 9283-9290.
DOI URL |
[15] |
Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, L. Qu, J. Power Sour. 247 (2014) 32-39.
DOI URL |
[16] |
G. Xin, W. Zhu, Y. Deng, J. Cheng, L.T. Zhang, A.J. Chung, S. De, J. Lian, Nat. Nanotechnol. 14 (2019) 168-175.
DOI URL |
[17] | G.Y. Chen, T. Chen, K. Hou, W.J. Ma, M. Tebyetekerwa, Y.H. Cheng, W. Weng, M. F. Zhu, Carbon 127 (2018) 218-227. |
[18] |
S.H. Chen, W.J. Ma, Y.H. Cheng, Z. Weng, B. Sun, L. Wang, W.P. Chen, F. Li, M. F. Zhu, H.M. Cheng, Nano Energy 15 (2015) 642-653.
DOI URL |
[19] |
Z. Xu, H.Y. Sun, X.L. Zhao, C. Gao, Adv. Mater. 25 (2013) 188-193.
DOI URL |
[20] |
X. Chen, R. Paul, L. Dai, Natl. Sci. Rev. 4 (2017) 453-489.
DOI URL |
[21] |
W.J. Ma, S.H. Chen, S.Y. Yang, W.P. Chen, W. Weng, M.F. Zhu, ACS Appl. Mater. Interfaces 8 (2016) 14622-14627.
DOI URL |
[22] |
S.H. Chen, W.J. Ma, H.X. Xiang, Y.H. Cheng, S.Y. Yang, W. Weng, M.F. Zhu, J. Power Sour. 319 (2016) 271-280.
DOI URL |
[23] |
Z. Xu, Y. Zhng, P.G. Li, C. Gao, ACS Nano 6 (2012) 7103-7113.
DOI URL |
[24] |
R. Kunwar, M. Harilal, S.G. Krishnan, B. Pal, I.I. Misnon, C.R. Mariappan, F.I . Ezema, H.I. Elim, C.C. Yang, R. Jose, Adv. Fiber Mater. 1 (2019) 205-213.
DOI URL |
[25] |
X. Zhang, Y. Xia, H. Dou, X. Hao, Y. Wang, B. Ding, S. Dong, J. Wang, Natl. Sci. Rev. 4 (2017) 71-90.
DOI URL |
[26] |
W.J. Ma, S.H. Chen, W.P.C S.Y. Yang, Y.H. Cheng, Y.W. Guo, S.J. Peng, S. Ramakr-ishna, M.F. Zhu, J. Power Sour. 306 (2016) 481-488.
DOI URL |
[27] | G.Z. Sun, J.Q. Liu, X. Zhang, X.W. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, P. Chen, Angew. Chem. Int. Ed. Engl. 53 (2014) 12576-12580. |
[28] |
W.J. Ma, S.H. Chen, S.Y. Yang, W.P. Chen, W. Weng, Y.H. Cheng, M.F. Zhu, Carbon 113 (2017) 151-158.
DOI URL |
[29] |
X.Y. Chen, X.X. Li, Y. Jiang, C.W. Shi, X.L. Li, Solid State Commun. 136 (2005) 94-96.
DOI URL |
[30] |
R. Chen, M. Yu, R.P. Sahu, I.K. Puri, I. Zhitomirsky, Adv. Energy Mater. 10 (2020) 1903848.
DOI URL |
[31] |
B.M. Tyson, R.K. Abu Al-Rub, A. Yazdanbakhsh, Z. Grasley, Compos. Part B Eng. 42 (2011) 1395-1403.
DOI URL |
[32] |
H. Machrafi, Nanoscale 12 (2020) 15081-15101.
DOI URL |
[33] |
G.Y. Chen, Y.L. Ai, I.T. Mugaanire, W.J. Ma, B.S. Hsiao, K. Hou, M.F. Zhu, J. Power Sour. 450 (2020) 227637.
DOI URL |
[34] |
S.H. Aboutalebi, R. Jalili, D. Esrafilzadeh, M. Salari, Z. Gholamvand, S.A. Yamini, K. Konstantinov, R.L. Shepherd, J. Chen, S.E. Moulton, P.C. Innis, A.I. Minett, J.M. Razal, G.G. Wallace, ACS Nano 8 (2014) 2456-2466.
DOI PMID |
[35] |
W.J. Ma, S.H. Chen, S.Y. Yang, M.F. Zhu, RSC Adv. 6 (2016) 50112-50118.
DOI URL |
[36] |
V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q.A. Vu, D.T. Pham, J.H. Lee, S.W. Kim, Y.H. Lee, ACS Nano 7 (2013) 5940-5947.
DOI URL |
[37] |
Y.M. Wang, J.C. Chen, J.Y. Cao, Y. Liu, Y. Zhou, J.H. Ouyang, D.C. Jia, J. Power Sour. 271 (2014) 269-277.
DOI URL |
[38] |
Y.N. Meng, Y. Zhao, C.G. Hu, H.H. Cheng, Y. Hu, Z.P. Zhang, G.Q. Shi, L.T. Qu, Adv. Mater. 25 (16) (2013) 2326-2331.
DOI URL |
[39] |
Y.W. Ma, P. Li, J.W. Sedloff, X. Zhang, H.B. Zhang, J. Liu, ACS Nano 9 (2015) 1352-1359.
DOI URL |
[40] |
X. Xiao, T.Q. Li, P.H. Yang, Y. Gao, H.Y. Jin, W.J. Ni, W.H. Zhan, X.H. Zhang, Y.Z. Cao, J.W. Zhong, L. Gong, W.C. Yen, W.J. Mai, J. Chen, K.F. Huo, Y.L. Chueh, Z. L. Wang, J. Zhou, ACS Nano 6 (2012) 9200-9206.
DOI PMID |
[1] | Peng Wan, Mingming Jiang, Tong Xu, Yang Liu, Caixia Kan. High-mobility induced high-performance self-powered ultraviolet photodetector based on single ZnO microwire/PEDOT:PSS heterojunction via slight ga-doping [J]. J. Mater. Sci. Technol., 2021, 93(0): 33-40. |
[2] | X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang. What is going on in magnesium alloys? [J]. J. Mater. Sci. Technol., 2018, 34(2): 245-247. |
[3] | Yanhong Chang, Jing Li, Bin Wang, Hui Luo, Linjie Zhi. A Facile Synthetic Approach to Reduced Graphene Oxide-Fe3O4 Composite as High Performance Anode for Lithium-ion Batteries [J]. J. Mater. Sci. Technol., 2014, 30(8): 759-764. |
[4] | Gaifei PENG Sammy Yin Nin CHAN, Jianhua YAN, Yefeng LIU, Quanxin YI. Characteristics of Crack Growth in High Performance Concrete Subjected to Fire [J]. J Mater Sci Technol, 2005, 21(01): 118-122. |
[5] | Wu YAO, Jie LI. Effect of Superfine Slag Powder on HPC Properties [J]. J Mater Sci Technol, 2003, 19(01): 87-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||