J. Mater. Sci. Technol. ›› 2020, Vol. 57: 26-32.DOI: 10.1016/j.jmst.2020.05.011
• Research Article • Previous Articles Next Articles
Hui Xinga,*(), Xianglei Dongb, Dongke Sunc,d,**(
), Yongsheng Hane
Received:
2020-02-27
Accepted:
2020-03-30
Published:
2020-11-15
Online:
2020-11-20
Contact:
Hui Xing,Dongke Sun
Hui Xing, Xianglei Dong, Dongke Sun, Yongsheng Han. Anisotropic lattice Boltzmann-phase-field modeling of crystal growth with melt convection induced by solid-liquid density change[J]. J. Mater. Sci. Technol., 2020, 57: 26-32.
Fig. 2. Velocity field and velocity vectors during free dendritic growth under density change induced flow for shrinkage β = 0.2 (a) and expansion β = -0.2 (b) when ε4 = 0.05. The time interval is 40τ0.
Fig. 3. Predicted liquid velocity vector and dimensionless temperature field for various relative density β at t/τ0 = 180 when ε4 = 0.05. Top left quadrant is for β = 0.2, top right quadrant is for β = 0.1, bottom right quadrant is for β = -0.2 and bottom left quadrant is for β = -0.1.
Fig. 5. Predicted dimensionless temperature profile ahead of the dendritic tip along the crystal symmetry axis (the dashed line in the inert) for various relative density β at t/τ0 = 180.
Fig. 6. Variation of predicted steady-state dimensionless tip velocity of the dendritic growth with relative density change for ε4 = 0.05 and ε4 = 0.03.
Fig. 8. Comparison between the dendritic tip growth Péclet number as a function of relative density change from analytical solution [20] and numerical simulations for ε4 = 0.05 and ε4 = 0.03.
Fig. 9. Comparison between selection parameter and modified selection parameter from numerical simulations with relative density change for ε4 = 0.05 and ε4 = 0.03.
[1] | J.S. Langer, Sci. 243(1989) 1150-1156. |
[2] |
P. Ball, Nat. Matter. 15(2016), 1060-1060.
DOI URL |
[3] |
K.G. Libbrecht, Annu. Rev. Mater. Res. 47(2017) 271.
DOI URL |
[4] |
G. Demange, H. Zapolsky, R. Patte, M. Brunel, Phys. Rev. E 96 (2017), 022803.
DOI URL PMID |
[5] |
T. Yang, Y. Han, J. Li, Chem. Eng. Sci. 138(2015) 457-464.
DOI URL |
[6] |
T. Yang, D. Segets, T. Thajudeen, Y. Han, W. Peukert, Chem. Eng. Sci. 192(2018) 254-263.
DOI URL |
[7] |
M. Goto, Y. Oaki, H. Imai, Cryst. Growth Des. 16(2016) 4278-4284.
DOI URL |
[8] | J. Xiao, Sci. 366(2019) 426-427. |
[9] | Y. Chen, X. Dou, K. Wang, Y. Han, Adv. Energy Mater. 1900019(2019) 1-7. |
[10] |
D.K. Sun, Z.H. Chai, Q. Li, G. Lin, Chin. Phys. B. 27(2018), 088105.
DOI URL |
[11] |
S.S. Shuai, X. Lin, Y.H. Dong, L. Hou, H.L. Liao, J. Wang, Z.M. Ren, J. Mater. Sci. Technol. 35(2019) 1587-1592.
DOI URL |
[12] |
W.F. Liu, Y.F. Cao, Y.F. Guo, M.Y. Sun, B. Xu, D.Z. Li, J. Mater. Sci. Technol. 38(2020) 170-182.
DOI URL |
[13] |
Y.W. Lee, R. Ananth, W.N. Gill, J. Cryst. Growth 132 (1993) 226-230.
DOI URL |
[14] |
R. Tönhardt, G. Amberg, Phys. Rev. E 62 (2000) 828-836.
DOI URL |
[15] |
M.F. Zhu, D.K. Sun, S.Y. Pan, Q. Zhang, D. Raabe, Model. Simul. Mater. Sci. Eng. 22(2014), 034006.
DOI URL |
[16] |
V. Pines, A. Chait, M. Zlatkowski, J. Cryst. Growth 169 (1996) 798-802.
DOI URL |
[17] | J. Narski, M. Picasso, Comput. Method. Appl. Mech.Eng. 196(2007) 3562-3576. |
[18] |
M.E. Glicksman, M.B. Koss, E.A. Winsa, Phys. Rev. Lett. 73(1994) 573-576.
DOI URL PMID |
[19] | G.B. McFadden, S.R. Coriell, J. Cryst. Growth 7 (1986) 507-512. |
[20] | H. Emmerich, Heidelberg, 2003, pp. 97-129. |
[21] |
M. Conti, M. Fermani, Phys. Rev. E 67 (2003), 026117.
DOI URL |
[22] |
Y. Sun, C. Beckermann, J. Cryst. Growth 311 (2009) 4447-4453.
DOI URL |
[23] |
I. Steinbach, JOM 65 (2013) 1096-1102.
DOI URL |
[24] |
Y.H. Zhao, B. Zhang, H. Hou, W.P. Chen, M. Wang, J. Mater. Sci. Technol. 35(2019) 1044-1052.
DOI URL |
[25] | H. Xing, M. Ji, X. Dong, Y. Wang, L. Zhang, S. Li, Mater. Design. 185(2020), 108250. |
[26] |
D.M. Anderson, G.B. McFadden, A.A. Wheeler, Physica D 135 (2000) 175-194.
DOI URL |
[27] |
J.H. Jeong, N. Goldenfeld, J.A. Dantzig, Phys. Rev. E 64 (2001), 041602.
DOI URL |
[28] |
C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, X. Tong, J. Comput. Phys. 154(1999) 468-496.
DOI URL |
[29] |
X. Tong, C. Beckermann, A. Karma, Q. Li, Phys. Rev. E 63 (2001), 061601.
DOI URL |
[30] |
A. Karma, W.J. Rappel, Phys. Rev. E 57 (1998) 4323-4349.
DOI URL |
[31] |
D.K. Sun, M.F. Zhu, S.Y. Pan, D. Raabe, Acta Mater. 57(2009) 1755-1767.
DOI URL |
[32] |
S. Chen, H. Chen, D. Martinez, W.H. Matthaeus, Phys. Rev. Lett. 67(1991) 3776.
DOI URL PMID |
[33] |
Y.H. Qian, D. d’Humières, P. Lallemand, Europhys. Lett. 17(1992) 479.
DOI URL |
[34] | Z. Chai, D.K. Sun, H. Wang, B. Shi, Inter. J. Heat Mass Tranr. 122(2018) 631-642. |
[35] | C. Zhang, Z. Deng, Y. Chen, Inter. J. Heat Mass Tranr. 86(2014) 322-329. |
[36] |
W. Miller, J. Cryst. Growth 230 (2001) 263-269.
DOI URL |
[37] | W. Miller, I. Rasin, F. Pimentel, J. Cryst, Growth 266 (2004) 283-288. |
[38] |
D. Medvedev, K. Kassner, Phys. Rev. E 72 (2005), 056703.
DOI URL |
[39] |
Z. Guo, J. Mi, S.M. Xiong, P.S. Grant, Metall. Mater. Trans. B. 44(2013) 924-937.
DOI URL |
[40] |
T. Takaki, R. Sato, R. Rojas, M. Ohno, Y. Shiuta, Comp. Mater. Sci. 147(2018) 124-131.
DOI URL |
[41] |
A. Zhang, Z. Guo, S.M. Xiong, Phys. Rev. E 97 (2018), 053302.
DOI URL PMID |
[42] |
A. Cartalade, A. Younsi, M. Plapp, Comput. Math. Appl. 71(2016) 1784-1798.
DOI URL |
[43] | A. Younsi, A. Cartalade, J. Comput. Phys. 325(2016) 1-21. |
[44] | D.K. Sun, H. Xing, X.L. Dong, Y.S. Han, Inter. J. Heat Mass Tranr. 133(2019) 1240-1250. |
[45] |
D.K. Sun, Appl. Math. Lett. 103(2020), 106222.
DOI URL |
[46] | D. d’Humières, Phil.Trans. R. Soc. Lond. A. 360(2002) 437-451. |
[47] |
Z. Chai, T.S. Zhao, Phys. Rev. E 86 (2012), 016705.
DOI URL |
[48] | R.S. Maier, R.S. Bernard, D.W. Grunau, Phys. Fluids (1994) 8(1996) 1788-1801. |
[49] |
O. Dardis, J. McCloskey, Phys. Rev. E 57 (1998) 4834-4837.
DOI URL |
[1] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[2] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[3] | Wonjoo Lee, Yuhyeong Jeong, Jae-Wook Lee, Howon Lee, Seong-hoon Kang, Young-Min Kim, Jonghun Yoon. Numerical simulation for dendrite growth in directional solidification using LBM-CA (cellular automata) coupled method [J]. J. Mater. Sci. Technol., 2020, 49(0): 15-24. |
[4] | Haowei Pan, Zhiqiang Han, Baicheng Liu. Study on Dendritic Growth in Pressurized Solidification of Mg-Al Alloy Using Phase Field Simulation [J]. J. Mater. Sci. Technol., 2016, 32(1): 68-75. |
[5] | Xiaoli Zhang, Yizhou Zhou, Yanyun Han, Tao Jin, Xiaofeng Sun. Dendritic Growth Pattern and Dendritic Network Distortion in the Platform of a Ni-based Superalloy [J]. J. Mater. Sci. Technol., 2014, 30(3): 223-228. |
[6] | Rui Chen, Qingyan Xu, Baicheng Liu. A Modified Cellular Automaton Model for the Quantitative Prediction of Equiaxed and Columnar Dendritic Growth [J]. J. Mater. Sci. Technol., 2014, 30(12): 1311-1320. |
[7] | Xiaolu YU, Fuguo LI, Yuanchun REN, Miaoquan LI. Phase-field Simulation of Microstructural Evolution during Preparation of Semi-solid Metal by Electromagnetic Stirring Method [J]. J. Mater. Sci. Technol., 2006, 22(04): 441-446. |
[8] | Yutuo ZHANG, Dianzhong LI, Yiyi LI, Weicheng PANG. Numerical Simulations of Equiaxed Dendrite Growth Using Phase Field Method [J]. J Mater Sci Technol, 2002, 18(01): 51-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||