J. Mater. Sci. Technol. ›› 2020, Vol. 58: 188-196.DOI: 10.1016/j.jmst.2020.03.072
• Research Article • Previous Articles Next Articles
Taeuk Kim, Seong-Hoon Yi, Sang-Eun Chun*()
Received:
2020-01-09
Accepted:
2020-03-01
Published:
2020-12-01
Online:
2020-12-17
Contact:
Sang-Eun Chun
Taeuk Kim, Seong-Hoon Yi, Sang-Eun Chun. Electrophoretic deposition of a supercapacitor electrode of activated carbon onto an indium-tin-oxide substrate using ethyl cellulose as a binder[J]. J. Mater. Sci. Technol., 2020, 58: 188-196.
Fig. 2. SEM images and corresponding EDS mapping images of an electrophoretic-deposited activated carbon electrode with (a, b) EC binder and (c, d) PTFE binder.
Fig. 4. Cyclic voltammograms before and after the electrochemical activation of both the pristine and annealed electrodes with (a) EC binder and (d) PTFE binder (scan rate: 5 mV s-1, electrolyte: 0.5 M K2SO4). Nyquist spectra were plotted for an electrode with (b) EC and (e) PTFE measured at the open-circuit potential in the frequency range from 0.1 to 1,000 kHz. The contact angle was measured on electrodes with (c) EC and (f) PTFE for 20 min after the electrodes were annealed.
Ethyl cellulose (EC) | Polytetrafluoroethylene (PTFE) | |||
---|---|---|---|---|
Pristine | Annealed | Pristine | Annealed | |
Initial cycle | 47 ± 3 F g-1 | 33 ± 4 F g-1 | 23 ± 1 F g-1 | 40 ± 2 F g-1 |
After 50 cycles | 50 ± 2 F g-1 | 60 ± 5 F g-1 | 23 ± 1 F g-1 | 41 ± 2 F g-1 |
Table 1 Specific capacitance of the samples with different binders (measured at 5 mV s-1).
Ethyl cellulose (EC) | Polytetrafluoroethylene (PTFE) | |||
---|---|---|---|---|
Pristine | Annealed | Pristine | Annealed | |
Initial cycle | 47 ± 3 F g-1 | 33 ± 4 F g-1 | 23 ± 1 F g-1 | 40 ± 2 F g-1 |
After 50 cycles | 50 ± 2 F g-1 | 60 ± 5 F g-1 | 23 ± 1 F g-1 | 41 ± 2 F g-1 |
Active material | Conductive material | Binder | Substrate | Specific capacitance | Deposition technique | Ref. |
---|---|---|---|---|---|---|
Activated carbon (YP-50) | acetylene black | EC | nickel foil | 158 F g-1(20 mV s-1) full-cell | Electrophoretic deposition (EPD) | [ |
Carbon nanotube (CNT) | - | EC + terpineol | carbon cloth | 74 F g-1 (2 mV s-1) full-cell | Screen printing+ Atmospheric pressure plasma jet (APPJ) | [ |
Activated carbon (YP-50 F) | - | PTFE | aluminum foil | 107 F g-1 (0.1 A g-1) full-cell | Rolling method | [ |
Activated carbon | carbon nanotubes | PTFE | nickel foam | 156 F g-1 (20 mV s-1) half-cell | Dropping method | [ |
Activated carbon (Norit SX Ultra) | - | PTFE + CMC | nickel foam | 80 F g-1(10 mA cm-2) full-cell | Laminating | [ |
Activated carbon (Norit SX Plus) | - | PTFE | stainless steel mesh | 102 F g-1 (0.35 mA cm-2) half-cell | Spreading | [ |
Activated carbon (BCP) | - | PTFE | nickel gauze | 150 F g-1 (100 mA g-1) half-cell | Hydraulic press | [ |
Activated carbon (Norit carbon) | Acetylene black | EC | ITO | 60 F g-1(5 mV s-1) half-cell | Electrophoretic deposition (EPD) | Current work |
Table 2 Comparison of the relevant previous researches.
Active material | Conductive material | Binder | Substrate | Specific capacitance | Deposition technique | Ref. |
---|---|---|---|---|---|---|
Activated carbon (YP-50) | acetylene black | EC | nickel foil | 158 F g-1(20 mV s-1) full-cell | Electrophoretic deposition (EPD) | [ |
Carbon nanotube (CNT) | - | EC + terpineol | carbon cloth | 74 F g-1 (2 mV s-1) full-cell | Screen printing+ Atmospheric pressure plasma jet (APPJ) | [ |
Activated carbon (YP-50 F) | - | PTFE | aluminum foil | 107 F g-1 (0.1 A g-1) full-cell | Rolling method | [ |
Activated carbon | carbon nanotubes | PTFE | nickel foam | 156 F g-1 (20 mV s-1) half-cell | Dropping method | [ |
Activated carbon (Norit SX Ultra) | - | PTFE + CMC | nickel foam | 80 F g-1(10 mA cm-2) full-cell | Laminating | [ |
Activated carbon (Norit SX Plus) | - | PTFE | stainless steel mesh | 102 F g-1 (0.35 mA cm-2) half-cell | Spreading | [ |
Activated carbon (BCP) | - | PTFE | nickel gauze | 150 F g-1 (100 mA g-1) half-cell | Hydraulic press | [ |
Activated carbon (Norit carbon) | Acetylene black | EC | ITO | 60 F g-1(5 mV s-1) half-cell | Electrophoretic deposition (EPD) | Current work |
Fig. 5. Rate capability of the electrophoretic-deposited electrodes with EC binder (red) and PTFE binder (blue) before (dotted line) and after (solid line) the annealing treatment.
Binder | Areal ratio of carbon on tape (%) | |
---|---|---|
Pristine | Annealed | |
EC | 29 % (2B) | 9 % (3B) |
PTFE | 65 % (1B) | 62 % (1B) |
Table 3 Detached carbon from electrophoretic-deposited electrodes prepared with different binders (EC and PTFE). The values in parentheses are indexed on the basis of the ASTM D3359 standard table.
Binder | Areal ratio of carbon on tape (%) | |
---|---|---|
Pristine | Annealed | |
EC | 29 % (2B) | 9 % (3B) |
PTFE | 65 % (1B) | 62 % (1B) |
Fig. 7. Long-term cyclability measured on (a) an electrode with EC and PTFE binder in a half-cell experiment for 15,000 cycles (cyclic voltammetry at 50 mV s-1) and (b) a symmetrical full-cell with an EC electrode (galvanostatic cycling at 0.4 A gboth electrodes-1).
EC | PTFE | |
---|---|---|
Initial cycle | 41 F g-1 | 34 F g-1 |
15,000th cycle | 39 F g-1 (95 %) | 29 F g-1 (85 %) |
Table 4 Long-term cycling results of the specific capacitance for 15,000 cycles.
EC | PTFE | |
---|---|---|
Initial cycle | 41 F g-1 | 34 F g-1 |
15,000th cycle | 39 F g-1 (95 %) | 29 F g-1 (85 %) |
[1] | A. Facchetti, T. Marks, Transparent Electronics: From Synthesis to Applications, Wiley, 2010. |
[2] | J.F. Wager, D.A. Keszler, R.E. Presley, Transparent Electronics, Springer US, 2007. |
[3] |
Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, Chem. Soc. Rev. 44 (2015) 3639-3665.
URL PMID |
[4] |
R.F. Service, Science 313 (2006) 902.
URL PMID |
[5] | C. Wessells, R.A. Huggins, Y. Cui, J. Power Sources 196 (2011) 2884-2888. |
[6] | C. Ramasamy, J. Palma del Val, M. Anderson, J. Power Sources 248 (2014) 370-377. |
[7] | Y. Cheng, H. Zhang, S. Lu, C.V. Varanasi, J. Liu, Nanoscale 5 (2013) 1067-1073. |
[8] | F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, RSC Adv. 3 (2013) 13059-13084. |
[9] | H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 86 (1999) 6451-6461. |
[10] | J. Ederth, P. Johnsson, G.A. Niklasson, A. Hoel, A. Hultåker, P. Heszler, C.G. Granqvist, A.R. van Doorn, M.J. Jongerius, D. Burgard, Phys. Rev. B 68 (2003) 155410-155419. |
[11] | C.C. Wu, C.I. Wu, J.C. Sturm, A. Kahn, Appl. Phys. Lett. 70 (1997) 1348-1350. |
[12] |
Y. Yang, S. Jeong, L. Hu, H. Wu, S.W. Lee, Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 13013-13018.
DOI URL PMID |
[13] |
F.N. Ishikawa, H.-k. Chang, K. Ryu, P.-c. Chen, A. Badmaev, L. Gomez De Arco, G. Shen, C. Zhou, ACS Nano 3 (2009) 73-79.
URL PMID |
[14] | T. Chen, H. Peng, M. Durstock, L. Dai, Sci. Rep. 4 (2014) 3612-3618. |
[15] | H. Marsh, F.R. Reinoso, Activated Carbon, Elsevier Science, 2006. |
[16] | M. Lu, F. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley, 2013. |
[17] | B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer US, 2013. |
[18] | K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, Wiley, 1988. |
[19] |
M. Vangari, T. Pryor, L. Jiang, J. Energy Eng. 139 (2013) 72-79.
DOI URL |
[20] |
Y. Zhang, L. Zhang, C. Zhou, Acc. Chem. Res. 46 (2013) 2329-2339.
URL PMID |
[21] | C. Mattevi, H. Kim, M. Chhowalla, J. Mater. Chem. 21 (2011) 3324-3334. |
[22] | U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films 513 (2006) 1-24. |
[23] | I. Gurrappa, L. Binder, Sci. Technol. Adv. Mater. 9 (2008) 043001-043011. |
[24] | L. Besra, M. Liu, Prog. Mater. Sci. 52 (2007) 1-61. |
[25] | B.J.C. Thomas, A.R. Boccaccini>, M.S.P. Shaffer , J. Am. Ceram. Soc. 88 (2005) 980-982. |
[26] | Q. Abbas, D. Pajak, E. Fr˛ackowiak, F. Béguin, Electrochim. Acta 140 (2014) 132-138. |
[27] | S.-L. Chou, Y. Pan, J.-Z. Wang, H.-K. Liu, S.-X. Dou, Phys. Chem. Chem. Phys. 16 (2014) 20347-20359. |
[28] | Y. Gao, Nanoscale Res. Lett. 12 (2017) 387-403. |
[29] | W. Cao, Y. Li, B. Fitch, J. Shih, T. Doung, J. Zheng, J. Power Sources 268 (2014) 841-847. |
[30] | S.S. Jeong, N. Böckenfeld, A. Balducci, M. Winter, S. Passerini, J. Power Sources 199 (2012) 331-335. |
[31] | D. Bresser, D. Buchholz, A. Moretti, A. Varzi, S. Passerini, Energy Environ. Sci. 11 (2018) 3096-3127. |
[32] | S. Bilal, M. Fahim, I. Firdous, A.-u.-H. Ali Shah, Appl.Surf. Sci. 435 (2018) 91-101. |
[33] |
T.C. Nirmale, B.B. Kale, A.J. Varma, Int. J. Biol. Macromol. 103 (2017) 1032-1043.
URL PMID |
[34] | J. Li, R.B. Lewis, J.R. Dahn, Electrochem. Solid-State Lett. 10 (2007) A17-A20. |
[35] | J. Drofenik, M. Gaberscek, R. Dominko, F.W. Poulsen, M. Mogensen, S. Pejovnik, J. Jamnik, Electrochim. Acta 48 (2003) 883-889. |
[36] | L. Ling, Y. Bai, Z. Wang, Q. Ni, G. Chen, Z. Zhou, C. Wu, ACS Appl. Mater. Interfaces 10 (2018) 5560-5568. |
[37] | W. Bao, Z. Zhang, Y. Gan, X. Wang, J. Lia, J. Energy Chem. 22 (2013) 790-794. |
[38] | A. García, M. Culebras, M.N. Collins, J.J. Leahy, J. Appl. Polym. Sci. 135 (2018) 46217-46222. |
[39] | I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science 334 (2011) 75-79. |
[40] | N. Böckenfeld, S.S. Jeong, M. Winter, S. Passerini, A. Balducci, J. Power Sources 221 (2013) 14-20. |
[41] | A. Varzi, A. Balducci, S. Passerini, J. Electrochem. Soc. 161 (2014) A368-A375. |
[42] | P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjöholm, J.P. Mikkola, Ind. Crops Prod. 32 (2010) 175-201. |
[43] | M. Davidovich-Pinhas, S. Barbut, A.G. Marangoni, Cellulose 21 (2014) 3243-3255. |
[44] | G.S. Rekhi, S.S. Jambhekar, Drug Dev. Ind. Pharm. 21 (1995) 61-77. |
[45] | S.C. Porter, Drug Dev. Ind. Pharm. 15 (1989) 1495-1521. |
[46] | P.K. Khare, J.M. Keller, M.S. Gaur, R. Singh, S.C. Datt, Polym. Int. 35 (1994) 337-343. |
[47] | Y. Young-Hoon, K. Kab-Young, P. Un-Kyu, Ceram. Int. 38 (2012) 1599-1603. |
[48] | X. Wu, L. Wang, H. Yu, Y. Huang, J. Appl. Polym. Sci. 97 (2005) 1292-1297. |
[49] | M.M. Pérez-Madrigal, M.G. Edo, C. Alemán, Green Chem. 18 (2016) 5930-5956. |
[50] |
A. Skłodowska, M. Woźniak, R. Matlakowska, Biol. Proced. Online 1 (1999) 114-121.
DOI URL PMID |
[51] | I. Zhitomirsky, A. Petric, JOM 53 (2001) 48-50. |
[52] | M. Li, Q. Liu, Z. Jia, X. Xu, Y. Cheng, Y. Zheng, T. Xi, S. Wei, Carbon 67 (2014) 185-197. |
[53] |
I. Zhitomirsky, L. Gal-Or, J. Mater. Sci. Mater. Med. 8 (1997) 213-219.
DOI URL PMID |
[54] | A.R. Boccaccini, I. Zhitomirsky, Curr. Opin. Solid State Mater.Sci. 6 (2002) 251-260. |
[55] | D.S. Achilias, G.P. Tsintzou, A.K. Nikolaidis, D.N. Bikiaris, G.P. Karayannidis, Polym. Int. 60 (2011) 500-506. |
[56] | C. Dubernet, J.C. Rouland, J.P. Benoit, Int. J. Pharm. 64 (1990) 99-107. |
[57] | P. Sakellariou, R.C. Rowe, E.F.T. White, Int. J. Pharm. 27 (1985) 267-277. |
[58] | P. Mondragón-Cortez, G. Vargas-Gutiérrez, Mater. Lett. 58 (2004) 1336-1339. |
[59] |
C. Portet, G. Yushin, Y. Gogotsi, J. Electrochem. Soc. 155 (2008) A531-A536.
DOI URL |
[60] |
M. Shrestha, I. Amatya, K. Wang, B. Zheng, Z. Gu, Q.H. Fan, J. Energy Storage 13 (2017) 206-210.
DOI URL |
[61] |
F.-H. Kuok, K.-Y. Kan, I.-S. Yu, C.-W. Chen, C.-C. Hsu, I.C. Cheng, J.-Z. Chen, Appl. Surf. Sci. 425 (2017) 321-328.
DOI URL |
[62] |
M. Aslan, D. Weingarth, N. Jackel, J.S. Atchison, I. Grobelsek, V. Presser, J. Power Sources 266 (2014) 374-383.
DOI URL |
[63] | Z. Zhu, Int. J. Electrochem. Sci. 11 (2016) 8270-8279. |
[64] |
J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, J. Power Sources 101 (2001) 109-116.
DOI URL |
[65] |
B. Wei, J.C. Tokash, G. Chen, M.A. Hickner, B.E. Logan, RSC Adv. 2 (2012) 12751-12758.
DOI URL |
[66] |
S. Yamazaki, K. Obata, Y. Okuhama, Y. Matsuda, M. Yamagata, M. Ishikawa, J. Power Sources 195 (2010) 1753-1756.
DOI URL |
[67] |
W. Cai, T. Lai, W. Dai, J. Ye, J. Power Sources 255 (2014) 170-178.
DOI URL |
[68] |
B.G. Choi, J. Hong, W.H. Hong, P.T. Hammond, H. Park, ACS Nano 5 (2011) 7205-7213.
DOI URL PMID |
[69] | M.-S. Wu, K.-H. Lin, J. Phys. Chem. C 114 (2010) 6190-6196. |
[70] | P.Y. Chan, S.R. Majid, Ionics 24 (2018) 539-548. |
[71] | D.J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworth-Heinemann, 1992. |
[72] |
E. Oh, P.E. Luner, Int. J. Pharm. 188 (1999) 203-219.
URL PMID |
[73] |
D.G. Gromadskyi, J.H. Chae, S.A. Norman, G.Z. Chen, Appl. Energy 159 (2015) 39-50.
DOI URL |
[74] | M.-J. Hwang, M.-G. Kim, S. Kim, Y.C. Kim, H.W. Seo, J.K. Cho, I.-K. Park, J. Suhr, H. Moon, J.C. Koo, H.R. Choi, K.J. Kim, Y. Tak, J.-D. Nam, Carbon 142 (2019) 68-77. |
[1] | Mingshi Yu, Guancheng Wang, Rongrong Zhao, Enze Liu, Tonglai Chen. Improved interfacial wetability in Cu/ZnO and its role in ZnO/Cu/ZnO sandwiched transparent electrodes [J]. J. Mater. Sci. Technol., 2020, 37(0): 123-127. |
[2] | Xiaogui Huang, Xiaozhang Zhan, Cuilian Wen, , Lijin Luo. Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb2+ and methyl orange sorption from aqueous solution [J]. J. Mater. Sci. Technol., 2018, 34(5): 855-863. |
[3] | A. Barroso-Bogeat , M. Alexandre-Franco, C. Fern, ndez-Gonz, lez, V. G, mez-Serrano. Preparation and Microstructural Characterization of Activated Carbon-Metal Oxide Hybrid Catalysts: New Insights into Reaction PathsA. [J]. J. Mater. Sci. Technol., 2015, 31(8): 806-814. |
[4] | Cholho Jang, Qingjun Jiang, Jianguo Lu, Zhizhen Ye. Structural, Optical and Electrical Properties of Ga Doped ZnO/Cu grid/Ga Doped ZnO Transparent Electrodes [J]. J. Mater. Sci. Technol., 2015, 31(11): 1108-1110. |
[5] | A. Omri, S.D. Lambert, J. Geens, F. Bennour, M. Benzina. Synthesis, Surface Characterization and Photocatalytic Activity of TiO2 Supported on Almond Shell Activated Carbon [J]. J. Mater. Sci. Technol., 2014, 30(9): 894-902. |
[6] | Qiang Song, Kezhi Li, Hejun Li, Qiangang Fu. Increasing the Tensile Property of Unidirectional Carbon/Carbon Composites by Grafting Carbon Nanotubes onto Carbon Fibers by Electrophoretic Deposition [J]. J. Mater. Sci. Technol., 2013, 29(8): 711-714. |
[7] | B.V. Kaludjerovic, M.S. Trtica, B.B. Radak, J.M. Stasic, S.S. Krstic Musovic, V.M. Dodevski. Analysis of the Interaction of Pulsed Laser with Nanoporous Activated Carbon Cloth [J]. J Mater Sci Technol, 2011, 27(11): 979-984. |
[8] | Miaoju Chuang. ITO Films Prepared by Long-throw Magnetron Sputtering without Oxygen Partial Pressure [J]. J Mater Sci Technol, 2010, 26(7): 577-583. |
[9] | Lihong Xue Youwei Yan. Preparation of Oriented Barium Titanate Thin Films by Combination of Electrophoretic Deposition with Hydrothermal Treatment [J]. J Mater Sci Technol, 2010, 26(11): 996-1000. |
[10] | Onder Albayrak, Sabri Altintas. Production of "Tricalcium Phosphate/Titanium Dioxide" Coating Surface on Titanium Substrates [J]. J Mater Sci Technol, 2010, 26(11): 1006-1010. |
[11] | Jianfeng Huang Wendong Yang Liyun Cao. Preparation of a SiC/Cristobalite-AlPO4 Multi-layer Protective Coating on Carbon/Carbon Composites and Resultant Oxidation Kinetics and Mechanism [J]. J Mater Sci Technol, 2010, 26(11): 1021-1026. |
[12] | Jong Rok Ahn, Gil Seon Kang, Hwack Joo Lee, Chang Joon Park. Electrophoretic Deposition of Oxide Nanoparticles for Electron Emission Enhancement [J]. J Mater Sci Technol, 2010, 26(11): 1032-1036. |
[13] | Haiwen Wang, Xiujuan Xu, Jianrong Zhang, Chunzhong Li. A Cost-Effective Co-precipitation Method for Synthesizing Indium Tin Oxide Nanoparticles without Chlorine Contamination [J]. J Mater Sci Technol, 2010, 26(11): 1037-1040. |
[14] | Hui Lin,Junsheng Yu,Nana Wang,Shuangling Lou,Yadong Jiang. Fabrication and Properties of DC Magnetron Sputtered Indium Tin Oxide on Flexible Plastic Substrate [J]. J Mater Sci Technol, 2009, 25(01): 119-122. |
[15] | Li WANG, Xiaobu HU, Xiangang XU, Shouzheng JIANG, Lina NING, Minhua JIANG. Synthesis of High Purity SiC Powder for High-resistivity SiC Single Crystals Growth [J]. J Mater Sci Technol, 2007, 23(01): 118-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||