Please wait a minute...
J Mater Sci Technol  2010, Vol. 26 Issue (6): 535-541    DOI:
Nanomaterials and Nanotechnology Current Issue | Archive | Adv Search |
Electrochemically Assisted Photocatalytic Oxidation of Methanol on TiO2 Nanotube Arrays
R. Mohammadpour, A. Iraji zad, N. Taghavinia, M. Rahman, M.M. Ahadian
1) Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
2) Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
Download: PDF (879 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      

In this work, the influence of an externally applied bias on photocatalytic performance of crystallized TiO2/Ti nanotubular electrode that formed by anodization in fluoride-based electrolyte were investigated and compared to the behavior of multiporous TiO2 electrode. The photoelectrocatalytic oxidation behavior of methanol over the nanotubular electrode has been studied by measuring photocurrent response, potentiodynamic polarization spectroscopy and using electrochemical impedance spectroscopy (EIS). It was found that the photoelectrocatalytic oxidation and the charge transfer rate constant of reaction on TiO2/Ti nanotubular electrode can significantly be increased by applying electrochemical bias. Moreover, based on our results we have found that the nanotubular TiO2 electrodes have considerably better performance in comparison with porous samples in photoelectrocatalytic performance

Key wordsTiO2 nanotube      Photoelectrocatalyst      Electrochemical impedance spectroscopy      Methanol     
Received: 27 March 2009      Published: 22 June 2010
Corresponding Authors: Azam Iraji zad     E-mail:

Cite this article:

R. Mohammadpour A. Iraji zad N. TaghaviniaM. Rahman M.M. Ahadian. Electrochemically Assisted Photocatalytic Oxidation of Methanol on TiO2 Nanotube Arrays. J Mater Sci Technol, 2010, 26(6): 535-541.

URL:     OR

S. Malato, J. Blanco, A. Vidal and C. Richter: Appl. Catal. B-Environ., 2002, 37, 1.
A.J. Feitz, B.H. Boyden and T.D. Waite: Water Res., 2000, 34(16), 3927.
J.A. Byrne, A. Davidson, P.S.M. Dunlop and B.R. Eggins: J. Photochem. Photobio. A-Chem., 2002, 148, 365.
A. Mills and S.L. Hunte: J. Photochem. Photobio. A-Chem., 1997, 108, 1.
G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes: Sol. Energy Mater. Sol. Cells, 2006, 90, 2011.
M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor and C.A. Grimes: J. Phys. D-Appl. Phys., 2006, 39, 2498.
T. Peng, A. Hasegawa, J. Qiu and K. Hirao: Chem. Mater., 2003, 15, 2011.
S.P. Albu, A. Ghicov, J.M. Macak and P. Schmuki: Phys. Stat. Sol. (RRL), 2007, 1(2), R65.
M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai and C.A. Grimes: J. Phys. Chem. C, 2007, 111, 14992.
Norma R. de Tacconi, H. Weren, D. McCheseney and K. Rajeshwar: Langmuir, 1998, 14, 2933.
M.E. Calvo, R.J. Candal and S.A. Bilmes: Environ. Sci. Technol., 2001, 35, 4132.
D. Jiang, H. Zhao, S. Zhang and R. John: J. Phys. Chem. B, 2003, 107, 12774.
X.Z. Li , H.L. Liu, P.T. Yue and Y.P. Sun: Environ. Sci. Technol., 2000, 34, 4401.
M. Zlamal, J.M. Macak, P. Schmuki and J. Krysa: Electrochem. Commun., 2007, 9, 2822.
E. Valatka and Z. Kulesius: J. Appl. Electrochem., 2007, 37, 415.
E. Barsoukov and J.R. Macdonald: Impedance Spectroscopy Theory, Experiment, and Applications, Wiley-Interscience, New Jersey, 2005.
H. Liu, X.Z. Li, Y.J. Leng and W.Z. Li: J. Phys. Chem. B, 2003, 107, 8988.
W.H. Leng, Z. Zhang, J.Q. Zhang and C.N. Cao: J. Phys. Chem. B, 2005, 109, 15008.
M.C. Li and J.N. Shen: J. Solid State Electrochem., 2006, 10, 980.
X. Quan, S. Yang, X. Ruan and H. Zhao: Environ. Sci. Technol., 2005, 39, 3770.
R. Mohammadpour, A. Iraji zad, M.M. Ahadian, N. Taghavinia and A. Dolati: Eur. Phys. J. Appl. Phys., 2009, 47, 10601.
O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes and E.C. Dickey: J. Mater. Res., 2005, 18, 156.
D. Xiong, H.J. Zhang and D.X. Zhang: J. Phys: Conf. Ser., 2007, 48, 1073.
R. Beranek, H. Tsuchiya, T. Sugishima, J.M. Macak, L. Taveira, S. Fujishima, H. Kisch and P. Schmuki: Appl. Phys. Lett., 2005, 87, 243114.
A.G. Munoz: Electrochim. Acta, 2007, 52, 4176.
J.M. Macak, M. Zlamal, J. Krysa and P. Schmuki: Small, 2007, 3, 300.
[1] Mir Ghasem Hosseini, Elham Shahryari. Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor[J]. J. Mater. Sci. Technol., 2016, 32(8): 763-773.
[2] Shuan Liu, Lin Gu, Haichao Zhao, Jianmin Chen, Haibin Yu. Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings[J]. J. Mater. Sci. Technol., 2016, 32(5): 425-431.
[3] Yunfei Lu, Junhua Dong, Wei Ke. Effects of Cl- Ions on the Corrosion Behaviour of Low Alloy Steel in Deaerated Bicarbonate Solutions[J]. J. Mater. Sci. Technol., 2016, 32(4): 341-348.
[4] Yunfei Lu, Junhua Dong, Wei Ke. Corrosion Evolution of Low Alloy Steel in Deaerated Bicarbonate Solutions[J]. J. Mater. Sci. Technol., 2015, 31(10): 1047-1058.
[5] Xinning Luan, Ying Wang. Plasmon-enhanced Performance of Dye-sensitized Solar Cells Based on Electrodeposited Ag Nanoparticles[J]. J. Mater. Sci. Technol., 2014, 30(1): 1-7.
[6] R.K. Gupta, K. Mensah-Darkwa, D. Kumar. Corrosion Protective Conversion Coatings on Magnesium Disks Using a Hydrothermal Technique[J]. J. Mater. Sci. Technol., 2014, 30(1): 47-53.
[7] S. Srinivasa Rao, B.V. Appa Rao, S. Roopas Kiran, B. Sreedhar. Lactobionic Acid as a New Synergist in Combination with Phosphonate–Zn(II) System for Corrosion Inhibition of Carbon Steel[J]. J. Mater. Sci. Technol., 2014, 30(1): 77-89.
[8] Marcelo Marques Tusi, Michele Brandalise, Nataly Soares de Oliveira Polanco, Olandir Vercino Correa, Antonio Carlos da Silva, Juan Carlo Villalba, Fauze Jaco Anaissi, Almir Oliveira N. Ni/Carbon Hybrid Prepared by Hydrothermal Carbonization and Thermal Treatment as Support for PtRu Nanoparticles for Direct Methanol Fuel Cell[J]. J. Mater. Sci. Technol., 2013, 29(8): 747-751.
[9] Jian Hou, Guang Zhu, Jingkun Xu, Huajian Liu. Anticorrosion Performance of Epoxy Coatings Containing Small Amount of Inherently Conducting PEDOT/PSS on Hull Steel in Seawater[J]. J. Mater. Sci. Technol., 2013, 29(7): 678-684.
[10] Yongchun Liang, Fu-Chun Liu, Ming Nie, Shuyan Zhao, Jiedong Lin, En-Hou Han . Influence of Nano-Al Concentrates on the Corrosion Resistance of Epoxy Coatings[J]. J. Mater. Sci. Technol., 2013, 29(4): 353-358.
[11] P. Mohan, G. Paruthimal Kalaignan. 1, 4-Bis (2-nitrobenzylidene) thiosemicarbazide as Effective Corrosion Inhibitor for Mild Steel[J]. J. Mater. Sci. Technol., 2013, 29(11): 1096-1100.
[12] Zhao Yang, Hongming Yu, Chunyang Wu, Gaoshao Cao, Jian Xie, Xinbing Zhao. Preparation of Nano-structured LiFexMn1-xPO4 (x=0, 0.2, 0.4) by Reflux Method and Research on the Influences of Fe(II) Substitution[J]. J. Mater. Sci. Technol., 2012, 28(9): 823-827.
[13] V. Maria Shalini, P. Arockiasamy, R. Uma Rani, A.K. Sharma. Flat Absorber Phosphorous Black Nickel Coatings for Space Applications[J]. J. Mater. Sci. Technol., 2012, 28(2): 118-124.
[14] Yongsheng Hao, Fuchun Liu, En-Hou Han. Mechanical and Barrier Properties of Epoxy/Ultra-short Glass Fibers Composite Coatings[J]. J. Mater. Sci. Technol., 2012, 28(12): 1077-1084.
[15] L. Benhaddad, L. Makhloufi, B. Messaoudi, K. Rahmouni, H. Takenouti. Reactivity of Nanostructured MnO2 in Alkaline Medium Studied with a Microcavity Electrode: Effect of Oxidizing Agent[J]. J. Mater. Sci. Technol., 2011, 27(7): 585-593.
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.