J. Mater. Sci. Technol. ›› 2026, Vol. 240: 279-289.DOI: 10.1016/j.jmst.2025.03.068
Previous Articles Next Articles
Panmei Liu, Shuo Ma,Yuan Huang, Yongchang Liu, Zumin Wang*
Received:2024-11-20
Revised:2025-01-27
Accepted:2025-03-02
Published:2026-01-01
Online:2026-01-06
Contact:
*E-mail address: Panmei Liu, Shuo Ma, Yuan Huang, Yongchang Liu, Zumin Wang. Tailoring the ultra-fine size and thermal stability of Au(Cu) nanoparticles by application of interface thermodynamics[J]. J. Mater. Sci. Technol., 2026, 240: 279-289.
| [1] T. Chookajorn, H.A. Murdoch, C.A. Schuh, Science 337 (2012) 951-954. [2] X. Zhou, A. Gupta, G.J. Tucker, G.B. Thompson, Acta Mater. 208(2021) 116662. [3] S. Liu, J. Zhang, H. Wang, G. Liu, X. Ding, J. Sun, J. Mater. Sci.Technol. 171(2024) 198-208. [4] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51(2006) 427-556. [5] J. Wang, L. Han, X.H. Li, D.G. Liu, L.M. Luo, Y. Huang, Y.C. Liu, Z.M. Wang, J. Mater. Sci.Technol. 65(2021) 202-209. [6] G.B. Shan, Y.Z. Chen, Y.J. Li, C.Y. Zhang, H. Dong, Y.B. Cong, W.X. Zhang, L. K. Huang, T. Suo, F. Liu, Scr. Mater. 179(2020) 1-5. [7] G. Li, J. Zhang, Y. Yang, Y. Wang, L. Wang, Y. Lu, J. Luan, G. Liu, J. Sun, Acta Mater. 257(2023) 119192. [8] N. Zanganeh, V.K. Guda, H. Toghiani, J.M. Keith, ACS Appl. Mater. Interfaces 10 (2018) 4776-4785. [9] M. Nemiwal, D. Kumar, Inorg. Chem. Commun. 128(2021) 108602. [10] Y. Zhou, Z. Ma, Sens. Actuator B-Chem. 233(2016) 426-430. [11] F. Moszner, C. Cancellieri, M. Chiodi, S. Yoon, D. Ariosa, J. Janczak-Rusch, L. P.H.Jeurgens, Acta Mater. 107(2016) 345-353. [12] L.K. Huang, W.T. Lin, B. Lin, F. Liu, Acta Mater. 118(2016) 306-316. [13] C.A. Schuh, K. Lu, MRS Bull. 46 (3) (2021) 225-235. [14] B. Lin, K. Wang, F. Liu, Y. Zhou, J. Mater. Sci.Technol. 34(2018) 1359-1363. [15] M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschope, R. Birringer, Acta Mater. 56(2008) 4255-4266. [16] V.Y. Gertsman, R. Birringer, Scr. Metall. 30(1994) 577-581. [17] F. Liu, R. Kirchheim, Scr. Mater. 51(2004) 521-525. [18] J.D. Zuo, Y.Q. Wang, K. Wu, C. Yang, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 793 (2020) 139823. [19] P. Lu, F. Abdeljawad, M. Rodriguez, M. Chandross, D.P. Adams, B.L. Boyce, B.G. Clark, N. Argibay, Materialia 6 (2019) 100298. [20] W.T. Xing, A.R. Kalidindi, D. Amram, C.A. Schuh, Acta Mater. 161(2018) 285-294. [21] Y.Z. Chen, K. Wang, G.B. Shan, A.V. Ceguerra, L.K. Huang, H. Dong, L.F. Cao, S.P. Ringer, F. Liu, Acta Mater. 158(2018) 340-353. [22] J. Wang, X.H. Li, E. Maawad, L. Han, Y. Huang, Y.C. Liu, Z.M. Wang, J. Mater. Sci.Technol. 144(2023) 188-197. [23] K. Lu, Nat. Rev. Mater. 1(2016) 16019. [24] F. Tang, C. Hou, H. Lu, Z. Zhao, X. Song, J. Mater. Sci.Technol. 168(2024) 239-249. [25] H.R. Peng, W.T. Huo, W. Zhang, Y. Tang, S. Zhang, L.K. Huang, H.Y. Hou, Z.G. Ding, F. Liu, Acta Mater. 251(2023) 118899. [26] P. Zhang, J.Y. Zhang, J. Li, G. Liu, K. Wu, Y.Q. Wang, J. Sun, Acta Mater. 76(2014) 221-237. [27] A. Suhane, D. Scheiber, M. Popov, V.I. Razumovskiy, L. Romaner, M. Militzer, Acta Mater. 224(2022) 117473. [28] H. Fang, S. van der Zwaag, N.H. van Dijk, Acta Mater. 212(2021) 116897. [29] H.R. Peng, M.M. Gong, Y.Z. Chen, F. Liu, Int. Mater. Rev. 62(2016) 303-333. [30] T. Chookajorn, C.A. Schuh, Phys. Rev. B 89 (2014) 064102. [31] X.G. Li, L.F. Cao, J.Y. Zhang, J. Li, J.T. Zhao, X.B. Feng, Y.Q. Wang, K. Wu, P. Zhang, G. Liu, J. Sun, Acta Mater. 151(2018) 87-99. [32] X.Y. Li, X. Zhou, K. Lu, Sci. Adv. 6 (2020) eaaz8003. [33] X.C. Liu, H.W. Zhang, K. Lu, Science 342 (2013) 337-340. [34] X.Y. Li, Z.H. Jin, X. Zhou, K. Lu, Science 370 (2020) 831-836. [35] F. Reichel, L.P.H.Jeurgens, E.J. Mittemeijer, Acta Mater. 56(2008) 659-674. [36] L.P.H.Jeurgens, Z.M. Wang, E.J. Mittemeijer, Int. J. Mater. Res. 100(2009) 1281-1307. [37] P. Liu, S. Ma, J. Zhang, Y. Huang, Y. Liu, Z. Wang, J. Mater. Sci.Technol. 217(2025) 104-115. [38] L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer, Phys. Rev. B 62 (2000) 4707-4719. [39] E. Panda, L.P.H.Jeurgens, E.J. Mittemeijer, Acta Mater. 58(2010) 1770-1781. [40] B. Sundman, S.G. Fries, W.A. Oates, Calphad 22 (1998) 335-354. [41] G. Greczynski, L. Hultman, Prog. Mater. Sci. 107(2020) 100591. [42] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, United States of America, 1992. [43] L. Vegard, Physics 5 (1921) 17-26. [44] G.Q. Zhao, W. Shen, E. Jeong, S.G. Lee, S.M. Yu, T.S. Bae, G.H. Lee, S.Z. Han, J.G. Tang, E.A. Choi, J. Yun, ACS Appl. Mater. Interfaces 10 (2018) 27510-27520. [45] G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, G. Comsa, Phys. Rev. Lett. 71(1993) 895-898. [46] R. Benedictus, A. Böttger, E.J. Mittemeijer, Phys. Rev. B 54 (1996) 9109-9125. [47] L. Han, L.P.H.Jeurgens, C. Cancellieri, J.Wang, Y.F. Xu, Y. Huang, Y.C. Liu, Z. M. Wang, Acta Mater. 200(2020) 857-868. [48] T. Ning, Q.L. Yu, Y.Y. Ye, Surf. Sci. 206(1988) 857-863. [49] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, 1988. [50] Z.M. Wang, J.Y. Wang, L.P.H. Jeurgens, E.J. Mittemeijer, Phy. Rev. B 77 (2008) 045424. [51] F. Sommer, R.N. Singh, E.J. Mittemeijer, J. Alloys Compd. 467(2009) 142-153. [52] W.H. Xiong, W. Liu, M.M. Dai, J.Q. Liu, X.G. Lu, Calphad 66 (2019) 101629. [53] A. Chmielewski, J. Nelayah, H. Amara, J. Creuze, D. Alloyeau, G. Wang, C. Ricol- leau, Phys.Rev. Lett. 120(2018) 025901. [54] I.J. Bennett, J.M. Kranenburg, W.G. Sloof, J. Am. Ceram.Soc. 88(2005) 2209-2216. [55] W. Liu, J.C. Li, W.T. Zheng, Q. Jiang, Phys. Rev. B 73 (2006) 205421. [56] X.L. Liu, S.L. Shang, Y.J. Hu, Y. Wang, Y. Du, Z.K. Liu, Mater. Des. 133(2017) 39-46. [57] T.L. Underwood, G.J. Ackland, Comput. Phys. Commun. 215(2017) 204-222. [58] Y. Mishin, Model. Simul. Mater. Sci. Eng. 045001(2014) 1-16. [59] Z.M. Wang, J.Y. Wang, L.P. Jeurgens, E.J. Mittemeijer, Phys. Rev. Lett. 100(2008) 125503. [60] F. Reichel, L.P.H. Jeurgens, E.J. Mittemeije, Phys. Rev. B 74 (2006) 144103. [61] A.K. Nieaaen, F.R.D.Boer, R. Boom, P.F.D. Chiitel, W.C.M. Mattene, A.R. Miedema, Calphad. 7(1983) 51-70. [62] S.J. Ashcroft, E. Schwarzman, J. Chem. Soc.Faraday Trans. 68(1972) 1360-1361. [63] O.I. Malyi, V.V. Kulish, C. Persson, RSC Adv. 4(2014) 55599-55603. [64] C. Scherer, J. Horbach, F. Schmid, M. Letz, J. Non-Cryst. Solids 468 (2017) 82-91. [65] M.W.C. DC, 1998. [66] G. Zhao, E. Jeong, E.A. Choi, S.M. Yu, J.S. Bae, S.G. Lee, S.Z. Han, G.H. Lee, J. Yun, Appl. Surf. Sci. 510(2020) 145515. [67] E. Jeong, E.A. Choi, Y. Ikoma, S.M. Yu, J.S. Bae, S.G. Lee, S.Z. Han, G.H. Lee, J. Yun, Acta Mater. 202(2021) 277-289. [68] V. Gervilla, G.A. Almyras, F. Thunström, J.E. Greene, K. Sarakinos, Appl. Surf. Sci. 488(2019) 383-390. [69] G.Q. Zhao, W. Wang, T.S. Bae, S.G. Lee, C.W. Mun, S.H. Lee, H.S. Yu, G.H. Lee, M. Song, J. Yun, Nat. Commun. 6(2015) 8830. [70] H.Z. Yu, C.V. Thompson, Acta Mater. 67(2014) 189-198. [71] T. Lee, D. Kim, M.E. Suk, G. Bang, J. Choi, J.S. Bae, J.H. Yoon, W.J. Moon, D. Choi, Adv. Funct. Mater. 31(2021) 2104372. [72] J. Wang, P. Schutzendube, Y.X. Qiu, J.Y. Wang, Y. Huang, Y.C. Liu, Z.M. Wang, Appl. Surf. Sci. 475(2019) 117-123. [73] V.G. Dubrovskii, Heidelberg New York Dordrecht London, 2014. [74] N. Formica, D.S. Ghosh, A. Carrilero, T.L. Chen, R.E. Simpson, V. Pruneri, ACS Appl. Mater. Interfaces 5 (2013) 3048-3053. [75] S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, S. Helveg, J. Catal. 281(2011) 147-155. [76] D.A Ramappa, W.B. Henley, J. Electrochem. Soc. 146(1999) 3773. [77] Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, J. Electrochem. Soc. 140(1993) 2427. [78] M.F. Nicolov, C.F. Woensdregt, J. Appl. Crystallogr. 35(2002) 491-496. [79] F.G. Svein Stùlen, Thermochim. Acta 327 (1999) 1-32. |
| [1] | S.W. Park, H.J. Lee, K.A. Nirmal, T.H. Kim, D.H. Kim, J.Y. Choi, J.S. Oh, J.M. Joo, T.G. Kim. Phase-change heterostructure with HfTe2 confinement sublayers for enhanced thermal efficiency and low-power operation through Joule heating localization [J]. J. Mater. Sci. Technol., 2025, 204(0): 104-114. |
| [2] | Shao-You Zhang, Yuan-Ting Mo, Zhen-Ming Hua, Xu Liu, Ze-Tian Liu, Hui-Yuan Wang. Improving long-term thermal stability in twin-roll cast Al-Mg-Si-Cu alloys by optimizing Mg/Si ratios [J]. J. Mater. Sci. Technol., 2025, 206(0): 164-175. |
| [3] | Yong-You Kim, Kwangjun Euh, Su-Hyeon Kim, Hyeon-Woo Son. Effects of Ag/Sc microadditions on the precipitation of over-aged Al-Zn-Mg-Cu alloys [J]. J. Mater. Sci. Technol., 2025, 209(0): 219-229. |
| [4] | Wanchun Yang, Xiaoting Wang, Haosong Li, Shaowei Hu, Wei Zheng, Wenbo Zhu, Mingyu Li. Enhanced thermal stability of joints formed by Ag-Cu supersaturated solid-solution nanoparticles paste by in-situ Cu nanoprecipitates [J]. J. Mater. Sci. Technol., 2025, 213(0): 69-79. |
| [5] | Wenya Li, Jingwen Yang, Zhengmao Zhang, Yingchun Xie, Chunjie Huang. High ductility induced by twin-assisted grain rotation and merging in solid-state cold spray additive manufactured Cu [J]. J. Mater. Sci. Technol., 2025, 214(0): 11-15. |
| [6] | Xiangjian Zhu, Mengchao Niu, Shan Liu, Yanan Yu, Luyi Han, Guoqun Zhao, Guangchun Wang. Enhancing thermal stability of laser-powder bed fusion fabricated FeCoCrNi-Al alloy by introducing Al element segregation using in-situ alloying [J]. J. Mater. Sci. Technol., 2025, 234(0): 181-198. |
| [7] | Panmei Liu, Shuo Ma, Jianbo Zhang, Yuan Huang, Yongchang Liu, Zumin Wang. Formation of ultra-stable Au nanoparticles in Au-ZrO2 nanocomposites [J]. J. Mater. Sci. Technol., 2025, 217(0): 104-115. |
| [8] | Yafang Zhang, Lairong Xiao, Zhenyang Cai, Ruiyang Xiao, Maokun Yin, Xing Li, Yiqian Fu, Xiangchen Xiao, Yuxiang Jiang, Zhenwu Peng, Sainan Liu, Xiaojun Zhao, Wei Li, Miao Song. High-performance Nb alloy featuring a hierarchical carbides configuration for elevated-temperature applications [J]. J. Mater. Sci. Technol., 2025, 218(0): 263-278. |
| [9] | Yuanfei Su, Shuzhan Zhang, Shengxuan Jiao, Xianbo Shi, Wei Yan, Lijian Rong. Nitrogen enhances microstructural thermal stability of Si-modified Fe-Cr-Ni austenitic stainless steel [J]. J. Mater. Sci. Technol., 2025, 226(0): 270-289. |
| [10] | Yubo Li, Xiaopei Wang, Jingtao Tang, Chi Zhang, Zhigang Yang, Hao Chen. On the role of Al or Ti alloying in additively manufactured IN718 alloys [J]. J. Mater. Sci. Technol., 2025, 227(0): 216-230. |
| [11] | Lam H. Pham, Ngoc Thuy Nguyen, Dang Mao Nguyen, Tuan An Nguyen, Tan Binh Nguyen, Jonghwan Suhr, Tien Dung Nguyen, Mourad Rahim, Anh Dung Tran-Le, Lucas Terrei, Rabah Mehaddi, Yuri Ferreira da Silva, Patrick Perré, DongQuy Hoang. Effective non-halogen flame-retardants combined with nSiO2 particles to improve thermal stability and fire resistance of high-performance polyurethane nanocomposite foams [J]. J. Mater. Sci. Technol., 2024, 203(0): 1-13. |
| [12] | Peixin Chen, Chongyang Li, Silin Han, Tao Hang, Huiqin Ling, Yunwen Wu, Ming Li. Abnormal grain growth of (110)-oriented perpendicular nanotwinned copper into ultra-large grains at low temperatures [J]. J. Mater. Sci. Technol., 2024, 203(0): 61-65. |
| [13] | Feixiang Liu, Xinhua Liu, Guoliang Xie, Yuan Wu, Cunguang Chen. Studies on thermal stability, softening behavior and mechanism of an ADS copper alloy at elevated temperatures [J]. J. Mater. Sci. Technol., 2024, 186(0): 79-90. |
| [14] | Xue Li, Zhenying Huang, Hongjie Wang, Weici Zhuang, Min Zhang, Wenqiang Hu, Qun Yu, Youbo Wu, Yang Zhou. Advancing heat-tolerant composites with coherent ladder interfaces via constructing extremely fine nanolamellar solute-twining architectures [J]. J. Mater. Sci. Technol., 2024, 186(0): 188-198. |
| [15] | Yafang Zhang, Xiaojun Zhao, Sainan Liu, Wei Li, Kechao Zhou, Lairong Xiao, Miao Song, Zhenyang Cai. Thermal stabilizing and toughening of a dual-phase Nb alloy by tuning stabilizing element C in Nb-BCC [J]. J. Mater. Sci. Technol., 2024, 186(0): 207-218. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
