[1] H.C. Tang, Y. Tian, Z.S. Wu, Y.J. Zeng, Y. Wang, Y. Hou, Z.Z. Ye, J.G. Lu, Energy Environ. Mater. 5 (2022) 1060-1083. [2] Z.W. Cao, R. Momen, S.S. Tao, D.Y. Xiong, Z.R. Song, X.H. Xiao, W.T. Deng, H.S. Hou, S. Yasar, S. Altin, F. Bulut, G.Q. Zou, X.B. Ji, Nano-Micro Lett. 14 (2022) 181. [3] E. Pameté, L. Köps, F.A. Kreth, S. Pohlmann, A. Varzi, T. Brousse, A. Balducci, V. Presser, Adv. Energy Mater. 13 (2023) 2301008. [4] S.I. Basha, S.S. Shah, S. Ahmad, M. Maslehuddin, M.M.Al-Zahrani, M.A. Aziz, Chem. Rec. 22 (2022) e202200134. [5] Mohammadi Zardkhoshoui, B. Ameri, S.Saeed Hosseiny Davarani, Chem. Eng. J. 470 (2023) 144132. [6] K. Nasrin, V. Sudharshan, K. Subramani, M. Sathish, Adv. Funct. Mater. 32 (2022) 2110267. [7] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R.Rennie, G.O. Shitta Bey, G.Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 3 (2010) 1238-1251. [8] Q.C. Zhu, D.Y. Zhao, M.Y. Cheng, J.Q. Zhou, K.A. Owusu, L.Q. Mai, Y. Yu, Adv. Energy Mater. 9 (2019) 1901081. [9] J. Zhao, A.F. Burke, Energy Storage Mater. 36 (2021) 31-55. [10] M. Rajkumar, C.T. Hsu, T.H. Wu, M.G. Chen, C.C. Hu, Prog. Nat. Sci. Mater. Int. 25 (2015) 527-544. [11] H.M. El Sharkawy, A.M. Mohamed, M. Ramadan, N.K. Allam, J. Energy Storage 54 (2022) 105272. [12] Q. Dou, H.S. Park, Energy Environ. Mater. 3 (2020) 286-305. [13] L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38 (2009) 2520-2531. [14] M.M. Shi, C. Peng, X.Y. Zhang, Small 19 (2023) 2301449. [15] X. Shi, J.H. Xie, F. Yang, F.X. Wang, D.Z. Zheng, X.S. Cao, Y.X. Yu, Q. Liu, X.H. Lu, Angew. Chem. Int. Ed. 61 (2022) e202214773. [16] Z.B. Tang, J.G. Dai, W.K. Wei, Z. Gao, Z.X. Liang, C.Z. Wu, B.R. Zeng, Y.T. Xu, G.R. Chen, W. Luo, C.H. Yuan, L.Z. Dai, Adv. Sci. 9 (2022) 2201685. [17] P. Bhojane, J. Energy Storage 45 (2022) 103654. [18] H. Kim, M.Y. Cho, M.H. Kim, K.Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, Adv. Energy Mater. 3 (2013) 1500-1506. [19] X.H. Tang, Y.H. Lui, B.L. Chen, S. Hu, J. Power Sources 352 (2017) 118-126. [20] G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36 (2006) 354-360. [21] G. Kresse, J. Hafner, Phys. Rev. B-Condens. Matter 49 (1994) 14251-14269. [22] G. Kresse, J. Furthmuller, Phys. Rev. B-Condens. Matter 54 (1996) 11169-11186. [23] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868. [24] M.A. Hassan, H.M. Yehia, A.S.A. Mohamed, A.E. El-Nikhaily, O.A. Elkady, Crys-tals 11 (2021) 540. [25] S. Linsinger, U.C. Rodewald, R. Pöttgen, Z. Anorg. Allg.Chem. 638 (2012) 1457-1461. [26] I.Uslu Aytimur, S.Durmu¸ soglu, A. Akdemir, Ceram. Int. 40 (2014) 12899-12903. [27] M.R.Foroughi Monshi, M.R. Monshi, World J. Nano Sci. Eng. 2 (2012) 154-160. [28] T. Sawabe, M. Akiyoshi, K. Yoshida, T. Yano, J. Nucl. Mater. 417 (2011) 430-434. [29] K. Krishnamoorthy, P. Pazhamalai, S.J. Kim, Electrochim. Acta 227 (2017) 85-94. [30] T.P. Luxton, M.J. Eick, K.G. Scheckel, J. Colloid Interface Sci. 359 (2011) 30-39. [31] A.V. Naumkin, A. Kraut-Vass, C.J. Powell, NIST X-ray Photoelectron Spec-troscopy Database, Measurement Services Division of the National Institute of Standards and Technology (NIST) Technology Services, Gaithersburg, MD, 2012. [32] N. Poonkottil, M.M. Minjauw, A. Werbrouck, S. Checchia, E. Solano, M. Nisula, A. Franquet, C. Detavernier, J. Dendooven, Chem. Mater. 34 (2022) 8946-8958. [33] G. Nagaraju, S.C. Sekhar, J.S. Yu, Adv. Energy Mater. 8 (2018) 1702201. [34] Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 29 (2019) 1809004. [35] M. Medic Ilic, N. Bundaleski, N. Ivanovi c, O.M.N.D. Teodoro, Z. Rakocevi c, D. Minic, N. Romcevi c, I. Radisavljevi c, Vacuum 176 (2020) 109340. [36] N. Soin, S.S. Roy, S.K. Mitra, T. Thundat, J.A.McLaughlin, J.Mater. Chem. 22 (2012) 14944-14950. [37] S.Y. Nong, W.J. Dong, J.W. Yin, B.W. Dong, Y. Lu, X.T. Yuan, X. Wang, K.J. Bu, M.Y. Chen, S.D. Jiang, L.M. Liu, M.L. Sui, F.Q. Huang, J. Am. Chem.Soc. 140 (2018) 5719-5727. [38] Z. Yang, H. Chen, S. Bei, K. Bao, C. Zhang, M. Xiang, C. Yu, S. Dong, H. Qin, Small (2024) 2310286. [39] C.Z. Yuan, B. Gao, X.G. Zhang, J. Power Sources 173 (2007) 606-612. [40] J. Li, X. Wang, Q. Huang, C. Dai, S. Gamboa, P.J. Sebastian, J. Appl. Electrochem. 37 (2007) 1129-1135. [41] Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D.G. Evans, X. Duan, Nano Energy 20 (2016) 294-304. [42] L. Dong, W. Yang, W. Yang, C. Wang, Y. Li, C. Xu, S. Wan, F. He, F. Kang, G. Wang, Nano-Micro Lett. 11 (2019) 94. [43] X. Han, X. Kong, D. Wang, X. Li, L. Dong, Chem. Eng. J. 477 (2023) 147078. [44] Z.G. Wu, Y.J. Zhong, J.T. Li, K. Wang, X.D. Guo, L. Huang, B.H. Zhong, S.G. Sun, RSC Adv. 6 (2016) 54404-54409. [45] X. Liu, M. Zarrabeitia, A. Mariani, X. Gao, H.M. Schütz, S. Fang, T. Bizien, G.A. Elia, S. Passerini, Small Methods 5 (2021) 2100168. [46] Y. Zhao, L.F. Hu, S.Y. Zhao, L.M. Wu, Adv. Funct. Mater. 26 (2016) 4085-4093. [47] A.J. Roberts, A.F.D. de Namor, R.C.T. Slade, Phys. Chem. Chem. Phys. 15 (2013) 3518-3526. [48] J. Yin, L. Qi, H.Y. Wang, Electrochim. Acta 88 (2013) 208-216. [49] Q. Zhang, Y. Li, J. Zhu, L. Lan, C. Li, J. Mao, F. Wang, Z. Zhang, L. Wang, Chem. Eng. J. 420 (2021) 129712. [50] J.H. Lin, H. Chen, M.M. Shuai, W.Z. Wu, Y. Wang, W.G. Zhang, Q.D. Ling, Mater. Today Nano 7 (2019) 100046. [51] S.A. Beknalkar, A.M. Teli, A.C. Khot, T.D. Dongale, M.A. Yewale, K.A. Nirmal, J.C. Shin, J. Energy Storage 72 (2023) 108272. [52] T.B. He, S.L. Wang, F.X. Lu, M.C. Zhang, X. Zhang, L. Xu, RSC Adv. 6 (2016) 97352-97362. [53] Y. Jiang, L. Chen, H. Zhang, Q. Zhang, W. Chen, J. Zhu, D. Song, Chem. Eng. J. 292 (2016) 1-12. [54] Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng, Chem. Eng. J. 362 (2019) 818-829. [55] H.Y. Gao, J.J. Xiang, Y. Cao, Nanotechnology 28 (2017) 235401. |