J. Mater. Sci. Technol. ›› 2024, Vol. 194: 185-192.DOI: 10.1016/j.jmst.2023.12.079
• Research Article • Previous Articles Next Articles
Rong Liua, Yan Gaoa,b,*
Received:
2023-11-20
Revised:
2023-12-24
Accepted:
2023-12-24
Published:
2024-09-20
Online:
2024-03-01
Contact:
*School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China. E-mail address: meygao@scut.edu.cn (Y. Gao).
Rong Liu, Yan Gao. One-step in situ preparation of Zr(Ti)-MOFs on titanium alloys at a low temperature of 80 °C and atmospheric pressure[J]. J. Mater. Sci. Technol., 2024, 194: 185-192.
[1] C. Elanchezhian, B.V. Ramnath, G. Ramakrishnan, K.N.S.Raghavendra, M. Muralidharan, V.Kishore, Mater. Today Proc. 5 (2018) 1211-1218. [2] S. Yan, G.L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M.S. Dargusch, L. Zhou, J. Mater. Sci.Technol. 34 (2018) 421-435. [3] M.E. Callow, J.A. Callow, Biologist 49 (2002) 1-5. [4] G.A. Hopkins, Forrest B.M, ICES J.Mar. Sci. 65 (2008) 811-815. [5] M. Yazdi, F. Khan, R. Abbassi, N. Quddus, H. Castaneda-Lopez, Int. J. Reliab. Qual. Saf. Eng. 223 (2022) 108474. [6] M. Eashwar, P. Chandrasekaran, G. Subramanian, Bull. Electrochem. 4 (1988) 115-119. [7] K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, Inorg. Chim. Acta 446 (2016) 61-74. [8] X. Zhang, A. Chen, M. Zhong, Z. Zhang, X. Zhang, Z. Zhou, X.H. Bu, Electrochem. Energy Rev. 2 (2019) 29-104. [9] D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, Energy Environ. Sci. 5 (2012) 6465-6473. [10] E. Haque, J.W. Jun, S.H. Jhung, J. Hazard. Mater. 185 (2011) 507-511. [11] J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.B.T.Nguyen, J.T. Hupp, Chem. Soc. Rev. 38 (2009) 1450-1459. [12] S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, R. Moos, Sensors 9 (2009) 1574-1589. [13] E. Coronado, G.M. Espallargas, Chem. Soc. Rev. 42 (2013) 1525-1539. [14] I.A. Lazaro, R.S. Forgan, Coord. Chem. Rev. 380 (2019) 230-259. [15] G. Wyszogrodzka, B. Marszałek, B. Gil, P. Dorożyński, Drug Discov. Today 21 (2016) 1009-1018. [16] J. Yang, Y.W. Yang, Small 16 (2020) 1906846. [17] H. Li, S. Luo, L. Zhang, Z. Zhao, M. Wu, W. Li, F.Q. Liu, ACS Appl. Mater. Interfaces 14 (2021) 1910-1920. [18] H. Seo, I. Lee, V. Sridhar, H. Park, Materials (Basel) 15 (2021) 27. [19] C. Tamames-Tabar, E. Imbuluzqueta, N. Guillou, C. Serre, S.R. Miller, E. Elkaïm, P. Horcajada, M.J. Blanco-Prieto, CrystEngComm 17 (2015) 456-462. [20] S. Lin, X. Liu, L. Tan, Z. Cui, X. Yang, K.W.K. Yeung, H. Pan, S. Wu, ACS Appl. Mater. Interfaces 9 (2017) 19248-19257. [21] A. Bétard, R.A. Fischer, Chem. Rev. 112 (2012) 1055-1083. [22] N. Kaur, P. Tiwari, K.S. Kapoor, A.K. Saini, V. Sharma, S.M. Mobin, CrystEng- Comm 22 (2020) 7513-7527. [23] Z. Kang, M. Xue, L. Fan, J. Ding, L. Guo, L. Gao, S. Qiu, Chem. Commun. 49 (2013) 10569-10571. [24] K. Okada, R. Ricco, Y. Tokudome, M.J. Styles, A.J. Hill, M. Takahashi, P. Falcaro, Adv. Funct. Mater. 24 (2014) 1969-1977. [25] J. Chen, X. Zhang, C. Huang, H. Cai, S. Hu, Q. Wan, X. Pei, J. Wang, J. Biomed. Mater. Res. Pt. A 105 (2017) 834-846. [26] W. Teng, Z. Zhang, Y. Wang, Y. Ye, E. Yinwang, A. Liu, X. Zhou, J. Xu, C. Zhou, H. Sun, F. Wang, L. Zhang, C. Cheng, P. Lin, Y. Wu, Z. Gou, X. Yu, Z. Ye, Small 17 (2021) 2102315. [27] B. Yan, J. Tan, H. Zhang, L. Liu, L. Chen, Y. Qiao, X. Liu, Biomater. Adv. 134 (2022) 11269. [28] K. Bavya Devi, K. Singh, N. Rajendran, J. Sol-Gel Sci. Technol. 59 (2011) 513-520. [29] D. Bu˚ žek, J. Demel, K. Lang, Inorg. Chem. 57 (2018) 14290-14297. [30] X. Liu, N.K. Demir, Z. Wu, K. Li, J. Am. Chem.Soc. 137 (2015) 6999-7002. [31] M.R.DeStefano, T.Islamoglu, S.J. Garibay, J.T. Hupp, O.K. Farha, Chem. Mater. 29 (2017) 1357-1361. [32] Y. Wang, C. Peng, T. Jiang, X. Li, Front. Energy 15 (2021) 656-666. [33] K. Momma, F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272-1276. [34] A. Santiago Portillo, H.G. Baldoví, M.T. García Fernandez, S. Navalón, P. Atienzar, B. Ferrer, M. Alvaro, H. Garcia, Z. Li, J. Phys. Chem. C 121 (2017) 7015-7024. [35] J. Wang, S. Zhang, Y. Han, L. Zhang, Q. Wang, G. Wang, X. Zhang, Mol. Catal. 532 (2022) 112741. [36] K. Indira, U. KamachiMudali, N. Rajendran, Appl. Surf. Sci. 316 (2014) 264-275. |
[1] | S.X. Wang, S.F. Li, X.M. Gan, R.D.K. Misra, R. Zheng, K. Kondoh, Y.F. Yang. Insights into the microstructural design of high-performance Ti alloys for laser powder bed fusion by tailoring columnar prior-β grains and α-Ti morphology [J]. J. Mater. Sci. Technol., 2024, 187(0): 156-168. |
[2] | Wei Zhang, Ali Chabok, Hui Wang, Jiajia Shen, J.P. Oliveira, Shaochuan Feng, Nobert Schell, Bart J. Kooi, Yutao Pei. Ultra-strong and ductile precipitation-strengthened high entropy alloy with 0.5 % Nb addition produced by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2024, 187(0): 195-211. |
[3] | C. Xu, X.H. Shao, H.J. Yang, M. Lv, H.Q. Liu, X.L. Ma. Uncovering the hierarchical clusters in the heat-affected zone of an electron beam welded α/β titanium alloy joint [J]. J. Mater. Sci. Technol., 2024, 174(0): 120-132. |
[4] | Yuxiang Chen, Ningyu Li, Yijie Wang, Kang Liu, Yongqin Chang, Mingyang Li. Phase evolution and mechanical properties of low-activation refractory high-entropy alloy Ti1.5ZrV0.5Ta0.5 [J]. J. Mater. Sci. Technol., 2024, 174(0): 145-156. |
[5] | Yi-Tong Liu, Hao-Jie Liang, Miao Du, Jia-Lin Yang, Zhen-Yi Gu, Xiao-Tong Wang, Yuan-Zheng Tang, Jin-Zhi Guo, Xing-Long Wu. Ester-based anti-freezing electrolyte achieving ultra-low temperature cycling for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2024, 182(0): 111-118. |
[6] | Dongyue Li, Peter K. Liaw, Lu Xie, Yong Zhang, Wenrui Wang. Advanced high-entropy alloys breaking the property limits of current materials [J]. J. Mater. Sci. Technol., 2024, 186(0): 219-230. |
[7] | Yu Chen, Ronggao Cui, Jun Shen, Gang Wang. Progress on the glassy-crystal laminates: From design, microstructure to deformation and future solutions [J]. J. Mater. Sci. Technol., 2024, 172(0): 113-144. |
[8] | Qilong Liu, Xiwu Li, Wei Xiao, Zhihui Li, Kai Zhu, Kai Wen, Lizhen Yan, Yanan Li, Yongan Zhang, Manling Sui, Baiqing Xiong. Disclosing the formation mechanisms of Ag-containing Laves phases at the atomic scale in an Al-Cu-Mg-Ag alloy [J]. J. Mater. Sci. Technol., 2024, 184(0): 111-121. |
[9] | Haitao Jiang, Hui Xing, Zihan Xu, Jing Feng, Jiao Zhang, Baode Sun. Achieving superior strength-ductility balance in novel heterogeneous lamella structures of Al-Zn-Mg-Cu alloys [J]. J. Mater. Sci. Technol., 2024, 184(0): 122-135. |
[10] | Wei Fan, Yijie Peng, Yongxia Wang, Yang Qi, Zhe Feng, Hua Tan, Fengying Zhang, Xin Lin. Effect of grain boundary Widmanstätten α colony on the anisotropic tensile properties of directed energy deposited Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2024, 184(0): 145-156. |
[11] | Xiuyang Zhong, Tongsheng Deng, Wenlong Xiao, Xiaochun Liu, Zhi Liu, Yucheng Yang, Olanrewaju A. Ojo. Improving thermal stability and creep resistance by Sc addition in near-α high-temperature titanium alloy [J]. J. Mater. Sci. Technol., 2024, 183(0): 1-11. |
[12] | H.Y. Ma, J.C. Wang, P. Qin, Y.J. Liu, L.Y. Chen, L.Q. Wang, L.C. Zhang. Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: Microstructure, defects, and mechanical behavior [J]. J. Mater. Sci. Technol., 2024, 183(0): 32-62. |
[13] | Yu Fu, Wenlong Xiao, Jian Rong, Lei Ren, Huabei Peng, Yuhua Wen, Xinqing Zhao, Chaoli Ma. Achieving large near-linear elasticity, low modulus, and high strength in a metastable β-Ti alloy by mild cold rolling [J]. J. Mater. Sci. Technol., 2024, 189(0): 1-12. |
[14] | Jie Shen, Zhihao Zhang, Jianxin Xie. Simultaneously enhancing the hot workability and room-temperature strength of Ti-6Al-4V alloy via adding Mo and Fe [J]. J. Mater. Sci. Technol., 2024, 180(0): 32-44. |
[15] | Yuqi He, Fengying Zhang, Yuhong Dai, Kexin Zhao, Zimeng Ye, Zerong Yu, Chao Xia, Hua Tan. Enhanced low cycle fatigue properties of selective laser melting Ti-6Al-4V with fine-tuned composition and optimized microstructure [J]. J. Mater. Sci. Technol., 2024, 180(0): 129-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||