J. Mater. Sci. Technol. ›› 2024, Vol. 193: 90-97.DOI: 10.1016/j.jmst.2024.01.041
• Research Article • Previous Articles Next Articles
Huicai Xiea,b,1, Xiaodong Lvc,1, Zhaojun Moa,*, Jian Gongc, Xinqiang Gaoa, Zhenxing Lid, Jinqi Wue, Jun Shena,d,*
Received:
2023-09-27
Revised:
2024-01-10
Accepted:
2024-01-25
Published:
2024-09-10
Online:
2024-09-05
Contact:
*E-mail addresses: mozhaojun@gia.cas.cn (Z. Mo), jshen@gia.cas.cn (J. Shen).
About author:
1These authors contributed equally to this work.
Huicai Xie, Xiaodong Lv, Zhaojun Mo, Jian Gong, Xinqiang Gao, Zhenxing Li, Jinqi Wu, Jun Shen. Tailoring the cryogenic magnetism and magnetocaloric effect from Zr substitution in EuTiO3 perovskite[J]. J. Mater. Sci. Technol., 2024, 193: 90-97.
[1] O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature 415 (2002) 150-152. [2] K.A.Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68(2005) 1479-1539. [3] B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Adv. Mater. 21(2009) 4545-4564. [4] V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M.Moreno-Ramírez, A.Conde, Prog. Mater. Sci. 93(2018) 112-232. [5] N. Terada, H. Mamiya, Nat. Commun. 12(2021) 1212. [6] H. Yin, J.Y. Law, Y.J. Huang, H.X. Shen, S.D. Jiang, S. Guo, V. Franco, J.F. Sun, Sci. China Mater. 65(2022) 1134-1142. [7] G. Lorusso, J.W. Sharples, E. Palacios, O. Roubeau, E.K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E.J.L.McInnes, D.Collison, M. Evangelisti, Adv. Mater. 25(2013) 4653-4656. [8] Y.C. Chen, L. Qin, Z.S. Meng, D.F. Yang, C. Wu, Z.D. Fu, Y.Z. Zheng, J.L. Liu, R. Tarasenko, M. Orendáˇc, J. Prokleška, V. Sechovský, M.L. Tong, J. Mater. Chem. A 2 (2014) 9851-9858. [9] Y.C. Chen, J. Prokleška, W.J. Xu, J.L. Liu, J. Liu, W.X. Zhang, J.H. Jia, V. Sechovský, M.L. Tong, J. Mater. Chem. C 3 (2015) 12206-12211. [10] J.W. Xu, X.Q. Zheng, S.X. Yang, L. Xi, J.Y. Zhang, Y.F. Wu, S.G. Wang, J. Liu, L.C. Wang, Z.Y. Xu, B.G. Shen, J. Alloy. Compd. 843(2020) 155930. [11] Q.F. Xu, B.L. Liu, M.Y. Ye, G.L. Zhuang, L.S. Long, L.S. Zheng, J. Am. Chem.Soc. 144(2022) 13787-13793. [12] S.X. Yang, X.Q. Zheng, D.S. Wang, J.P. Xu, W. Yin, L. Xi, C.F. Liu, J. Liu, J.W. Xu, H. Zhang, Z.Y. Xu, L.C. Wang, Y.H. Yao, M.S. Zhang, Y.C. Zhang, J.X. Shen, S.G. Wang, B.G. Shen, J. Mater. Sci.Technol. 146(2023) 168-176. [13] B. Yang, J.B. Trebbia, R. Baby, Ph. Tamarat, B. Lounis, Nat. Photonics 9 (2015) 658-662. [14] J. Dean, Cryogenics 25 (1985) 87-91. [15] G. Kawaguchi, A.A. Bardin, M. Suda, M. Uruichi, H.M. Yamamoto, Adv. Mater. 31(2019) 1805715. [16] A.Y. Vshivkov, A.V. Delkov, A.A. Kishkin, N.A. Lavrov, Chem. Pet. Eng. 55(2019) 306-311. [17] R. Radebaugh, J. Phys.: Condens. Matter 21 (2009) 164219. [18] C.S. Hong, X.D. Xu, Cryogenics 34 (1994) 183-186. [19] H. Yayama, Y. Hatta, A. Tomokiyo, Phys. B 284 (20 0 0) 2016-2017. [20] L.W. Li, K. Nishimura, W.D. Hutchison, Z.H. Qian, D.X. Huo, T. NamiKi, Appl. Phys. Lett. 100(2012) 152403. [21] H. Zhang, C.F. Xing, H. Zhou, X.Q. Zheng, X.F. Miao, L.H. He, J. Chen, H.L. Lu, E.K. Liu, W.T. Han, H.G. Zhang, Y.X. Wang, Y. Long, L. van Eijk, E.Brück, Acta Mater. 193(2020) 210-220. [22] K. Dey, A. Indra, S. Majumdar, S. Giri, J. Mater. Chem. C 5 (2017) 1646-1650. [23] L.W. Li, P. Xu, S.K. Ye, Y. Li, G.D. Liu, D.X. Huo, M. Yan, Acta Mater. 194(2020) 354-365. [24] Y.K. Zhang, B. Zhang, S. Li, J. Zhu, B.B. Wu, J. Wang, Z.M. Ren, Ceram. Int. 47(2021) 18205-18212. [25] Y.K. Zhang, Y. Tian, Z.Q. Zhang, Y.S. Jia, B. Zhang, M.Q. Jiang, J. Wang, Z.M. Ren, Acta Mater. 226(2022) 117669. [26] Z.J. Mo, J. Shen, L. Li, Y. Liu, C.C. Tang, F.X. Hu, J.R. Sun, B.G. Shen, Mater. Lett. 158(2015) 282-284. [27] J.H. Lee, L. Fang, E. Vlahos, X.L. Ke, Y.W. Jung, L.F. Kourkoutis, J.W. Kim, P.J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P.C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J.W. Freeland, D.A. Muller, C.J. Fennie, P. Schif-fer, V. Gopalan, E.J. Halperin, D.G. Schlom, Nature 466 (2010) 954-959. [28] C.J. Fennie, K.M. Rabe, Phys. Rev. Lett. 97(2006) 267602. [29] S. Roy, N. Khan, P. Mandal, Phys. Rev. B 98 (2018) 134428. [30] X. Sheng, Y.N. Gu, X.S. Wu, J. Magn. Magn.Mater. 497(2020) 166077. [31] S. Roy, N. Khan, P. Mandal, APL Mater. 4(2016) 026102. [32] R. Zhao, Y.D. Ji, C. Yang, W.W. Li, Y.Y. Zhu, W. Zhang, H. Lu, Y.C. Jiang, G.Z. Liu, J.W. Hong, H.Y. Wang, H. Yang, Ceram. Int. 46(2020) 19990-19995. [33] G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251-14269. [34] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561. [35] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186. [36] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979. [37] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868. [38] I.G. Buda, C. Lane, B. Barbiellini, A. Ruzsinszky, J. Sun, A. Bansil, Sci. Rep. 7(2017) 44766. [39] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192. [40] K. Momma, F. Izumi, J. Appl. Crystallogr. 44(2011) 1272-1276. [41] H. Akamatsu, K. Fujita, H. Hayashi, T. Kawamoto, Y. Kumagai, Y. Zong, K. Iwata, F. Oba, I. Tanaka, K. Tanaka, Inorg. Chem. 51(2012) 4560-4567. [42] C.L. Chien, S. DeBenedetti, F.De S. Barros, Phys. Rev. B 10 (1974) 3913-3922. [43] T.R.McGuire, M.W. Shafer, R.J. Joenk, H.A. Alperin, S.J. Pickart, J. Appl. Phys. 37(1966) 981-982. [44] R. Ranjan, H.S. Nabi, R. Pentcheva, J. Appl. Phys. 105(2009) 053905. [45] R. Ranjan, H.S. Nabi, R. Pentcheva, J. Phys.: Condens. Matter 19 (2007) 406217. [46] H. Akamatsu, Y. Kumagai, F. Oba, K. Fujita, H. Murakami, K. Tanaka, I. Tanaka, Phys. Rev. B 83 (2011) 214421. [47] A. Midya, P. Mandal, K. Rubi, R.F. Chen, J.S. Wang, R. Mahendiran, G. Lorusso, M. Evangelisti, Phys. Rev. B 93 (2016) 094422. [48] Y. Tanaka, M. Nakai, T. Akahori, M. Niinomi, Y. Tsutsumi, H. Doi, T. Hanawa, Corros. Sci. 50 (2008) 2111-2116. [49] F.H. Le, L.X. Wang, W. Jia, D.Z. Jia, S.J. Bao, J. Alloy. Compd. 512(2012) 323-327. [50] O.S. Bezrkovnyi, M. Vorokhta, M. Małecka, W. Mista, L. Kepinski, Catal. Com-mun. 135(2020) 105875. [51] T. Wei, Q.G. Song, Q.J. Zhou, Z.P. Li, X.L. Qi, W.P. Liu, Y.R. Guo, J.M. Liu, Appl. Surf. Sci. 258(2011) 599-603. [52] H.C. Xie, W.X. Su, H.M. Lu, Z.J. Mo, D.H. Wang, H. Sun, L. Tian, X.Q. Gao, Z.X. Li, J. Shen, J. Mater. Sci.Technol. 118(2022) 128-135. [53] V.K. Pecharsky, K.A. Gschneidner, J. Appl. Phys. 86(1999) 565-575. [54] A.A. Wagh, K.G. Suresh, P.S.Anil Kumar, S.Elizabeth, J. Phys. D: Appl. Phys. 48(2015) 135001. [55] A. Midya, P. Mandal, S. Das, S. Banerjee, L.S.Sharath Chandra, V.Ganesan, S. Roy Barman, Appl. Phys. Lett. 96(2010) 142514. [56] M. Das, S. Roy, P. Mandal, Phys. Rev. B 96 (2017) 174405. [57] Y.J. Ke, X.Q. Zhang, J.F. Wang, Z.H. Cheng, J. Alloy. Compd. 739(2018) 897-900. [58] S. Mahana, U. Manju, D. Topwal, J. Phys.D-Appl. Phys. 51(2018) 305002. [59] D.X. Li, T. Yamamura, S. Nimori, Y. Homma, F. Honda, D. Aoki, Appl. Phys. Lett. 102(2013) 152409. [60] A. Midya, N. Khan, D. Bhoi, P. Mandal, Phys. B 448 (2014) 43-45. [61] L.W. Li, Y. Yuan, Y.K. Zhang, T. Namiki, K. Nishimura, R. Pöttgen, S. Zhou, Appl. Phys. Lett. 107(2015) 132401. [62] W. Zhang, Z.J. Mo, W.H. Jiang, Z.H. Hao, J.W. Luo, R.J. Cheng, G.D. Liu, L. Li, J. Shen, J. Magn. Magn.Mater. 492(2019) 165684. [63] L.D. Griffith, Y. Mudryk, J. Slaughter, V.K. Pecharsky, J. Appl. Phys. 123(2018) 034902. [64] D. Guo, Y.K. Zhang, B.B. Wu, H.F. Wang, R.G. Guan, X. Li, Z.M. Ren, J. Alloy. Compd. 830(2020) 154666. [65] Y.K. Zhang, J. Zhu, S. Li, Z.Q. Zhang, J. Wang, Z.M. Ren, Sci. China Mater. 65(2022) 1345-1352. [66] J. ´Cwik, Y. Koshkid’ko, K. Nenkov, E.A. Tereshina, K. Rogacki, J. Alloy. Compd. 735(2018) 1088-1095. [67] I.G. de Oliveira, P.J. von Ranke, M. El Massalami, C.M. Chaves, Phys. Rev. B 72 (2005) 174420. |
[1] | Xinzeng Liang, Chi Zhang, Jing Bai, Jianglong Gu, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Manipulation of magnetocaloric and elastocaloric effects in Ni-Mn-In alloys by lattice volume and magnetic variation: Effect of Co and Fe co-doping [J]. J. Mater. Sci. Technol., 2024, 172(0): 156-165. |
[2] | Jian Li, Minxia Fang, Yao Liu, Xin Song, Wentao Jia, Junming Gou, Tao Yuan, Yuanchao Ji, Lizhong Zhao, Chen Wang, Tianyu Ma. Enhanced magnetic performance of Fe-rich Sm2Co17-type magnets by optimizing Zr content [J]. J. Mater. Sci. Technol., 2024, 193(0): 178-186. |
[3] | Yuzhu Song, Meng Xu, Xinqi Zheng, Chang Zhou, Naike Shi, Qingzhen Huang, Shouguo Wang, Yong Jiang, Xianran Xing, Jun Chen. A new method to enhance the magnetocaloric effect in (Sc,Ti)Fe2 via magnetic phase separation [J]. J. Mater. Sci. Technol., 2023, 147(0): 102-111. |
[4] | Xingdu Fan, Tao Zhang, Weiming Yang, Junhua Luan, Zengbao Jiao, Hui Li. Design of FeSiBPCu soft magnetic alloys with good amorphous forming ability and ultra-wide crystallization window [J]. J. Mater. Sci. Technol., 2023, 147(0): 124-131. |
[5] | Yikun Zhang, Jiayu Ying, Xinqiang Gao, Zhaojun Mo, Jun Shen, Lingwei Li. Exploration of the rare-earth cobalt nickel-based magnetocaloric materials for hydrogen liquefaction [J]. J. Mater. Sci. Technol., 2023, 159(0): 163-169. |
[6] | Hangboce Yin, Jun-Qiang Wang, Yongjiang Huang, Hongxian Shen, Shu Guo, Hongbo Fan, Juntao Huo, Jianfei Sun. Relating microstructure to magnetocaloric properties in RE36Tb20Co20Al24 (RE = Gd, Dy or Ho) high-entropy metallic-glass microwires designed by binary eutectic clusters method [J]. J. Mater. Sci. Technol., 2023, 149(0): 167-176. |
[7] | Lingwei Li, Mi Yan. Recent progress in the development of RE2TMTM'O6 double perovskite oxides for cryogenic magnetic refrigeration [J]. J. Mater. Sci. Technol., 2023, 136(0): 1-12. |
[8] | Shuxian Yang, Xinqi Zheng, Dingsong Wang, Juping Xu, Wen Yin, Lei Xi, Chaofan Liu, Jun Liu, Jiawang Xu, Hu Zhang, Zhiyi Xu, Lichen Wang, Yihong Yao, Maosen Zhang, Yichi Zhang, Jianxin Shen, Shouguo Wang, Baogen Shen. Giant low-field magnetocaloric effect in ferromagnetically ordered Er1-xTmxAl2 (0 ≤ x ≤ 1) compounds [J]. J. Mater. Sci. Technol., 2023, 146(0): 168-176. |
[9] | Wei Gao, Yaqiang Dong, Xingjie Jia, Liping Yang, Xubin Li, Shouding Wu, Ronglin Zhao, Hang Wu, Qiang Li, Aina He, Jiawei Li. Novel CoFeAlMn high-entropy alloys with excellentsoft magnetic properties and high thermal stability [J]. J. Mater. Sci. Technol., 2023, 153(0): 22-31. |
[10] | Nengjun Yu, Yingchang Li, Zesong Ren, Minxiang Pan, Hangfu Yang, Qiong Wu, Hongliang Ge, Minggang Zhu, Wei Li. Micron-scale 1:5H-based precipitated phase with the lamellar structure of sintered Sm2Co17-based magnets and its potential application [J]. J. Mater. Sci. Technol., 2023, 153(0): 159-165. |
[11] | Xuefeng Liao, Weiwei Zeng, Lizhong Zhao, Qing Zhou, Jiayi He, Wei Li, Xiangyi Liu, Hongya Yu, Xiaolian Liu, Haoyang Jia, Jean-Marc Greneche, Xuefeng Zhang, Zhongwu Liu. Grain boundary construction and properties enhancement for hot deformed (Ce,La,Y)-Fe-B magnet by a two-step diffusion process [J]. J. Mater. Sci. Technol., 2023, 165(0): 253-261. |
[12] | Akshay Kumar, Kavita Kumari, Mohit K. Sharma, Ankush Vij, Shalendra Kumar, Seok-Hwan Huh, Bon Heun Koo. Chemically inducing room temperature spin-crossover in double layered magnetic refrigerants Pr1.4+xSr1.6-xMn2O7 (0.0 ≤ x ≤ 0.5) [J]. J. Mater. Sci. Technol., 2022, 124(0): 232-242. |
[13] | Qingfang Huang, Qingzheng Jiang, Jifan Hu, Sajjad Ur Rehman, Gang Fu, Qichen Quan, Jixiang Huang, Deqin Xu, Dakun Chen, Zhenchen Zhong. Extraordinary simultaneous enhancement of the coercivity and remanence of dual alloy HRE‐free Nd‐Fe‐B sintered magnets by post‐sinter annealing [J]. J. Mater. Sci. Technol., 2022, 106(0): 236-242. |
[14] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
[15] | Yikun Zhang, Jian Zhu, Shuo Li, Jiang Wang Zhongming Ren. Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy [J]. J. Mater. Sci. Technol., 2022, 102(0): 66-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||