J. Mater. Sci. Technol. ›› 2024, Vol. 185: 23-31.DOI: 10.1016/j.jmst.2023.09.059
• Research article • Previous Articles Next Articles
Linshuang Zhanga, Manyi Yangb,*, Shiwei Zhanga, Haiyang Niua,*
Received:
2023-07-14
Revised:
2023-09-16
Accepted:
2023-09-29
Online:
2023-12-08
Contact:
*E-mail addresses: manyi.yang@iit.it (M. Yang), haiyang.niu@nwpu.edu.cn (H. Niu).
Linshuang Zhang, Manyi Yang, Shiwei Zhang, Haiyang Niu. Unveiling the crystallization mechanism of cadmium selenide via molecular dynamics simulation with machine-learning-based deep potential[J]. J. Mater. Sci. Technol., 2024, 185: 23-31.
[1] S. Ninomiya, S. Adachi, J. Appl. Phys. 78 (1995) 46 81-46 89. [2] S.H. Park, M.P. Casey, J. Falk, J. Appl. Phys. 73 (1993) 8041-8045. [3] J.H. Yuan, X.M. Duan, B.Q. Yao, Z. Cui, Y.Y. Li, T.Y. Dai, Y.J. Shen, Y.L. Ju, Appl. Phys. B 122 (2016) 202. [4] J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, Y. Ju, Opt. Laser Technol. 92 (2017) 1-4. [5] K. Wang, X. Tong, Y. Zhou, H. Zhang, F. Navarro-Pardo, G.S. Selopal, G. Liu, J. Tang, Y. Wang, S. Sun, D. Ma, Z. Wang, F. Vidal, H. Zhao, F. Rosei, J. Mater. Chem. A 7 (2019) 14079-14088. [6] B.B. Salzmann, J.F. Vliem, D.N. Maaskant, L.C. Post, C. Li, S. Bals, D. Van-maekelbergh, Chem.Mater. 33 (2021) 6 853-6 859. [7] K. Wu, T. Lian, Chem. Soc. Rev. 45 (2016) 3781-3810. [8] Z. Du, M. Artemyev, J. Wang, J. Tang, J. Mater. Chem. A 7 (2019) 2464-2489. [9] M. Schierhorn, S.W. Boettcher, S. Kraemer, G.D. Stucky, M. Moskovits, Nano Lett. 9 (2009) 3262-3267. [10] M. Liu, Z.-Y. Chen, X.-H. He, X.-Y. Liu, H.-L. Hu, H. Tian, Y. Liu, F.-L. Jiang, Chem. Mater. 35 (2023) 1868-1876. [11] M.C. Schlamp, X. Peng, A.P. Alivisatos, J. Appl. Phys. 82 (1997) 5837-5842. [12] H. Mattoussi, L.H. Radzilowski, B.O. Dabbousi, E.L. Thomas, M.G. Bawendi, M.F. Rubner, J. Appl. Phys. 83 (1998) 7965-7974. [13] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281 (1998) 2013-2016. [14] W.C.W. Chan, S. Nie, Science 281 (1998) 2016-2018. [15] J. Steininger, Mat. Res. Bull. 3 (1968) 595-598. [16] Y. Ni, H. Wu, M. Mao, W. Li, Z. Wang, J. Ma, S. Chen, C. Huang, Opt. Mater. Express 8 (2018) 1796-1805. [17] N.N. Kolesnikov, R.B. James, N.S. Berzigiarova, M.P. Kulakov, Proc. SPIE4784 (2002) 93-104. [18] S.M. Hughes, A.P. Alivisatos, Nano Lett. 13 (2013) 106-110. [19] L. Qu, Z.A. Peng, X. Peng, Nano Lett. 1 (2001) 333-337. [20] F. Tan, S. Qu, L. Wang, Q. Jiang, W. Zhang, Z. Wang, J. Mater. Chem. A 2 (2014) 14502-14510. [21] C.Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Phys. Rev. B 46 (1992) 10086-10097. [22] J. Huang, M.V. Kovalenko, D.V. Talapin, J. Am. Chem.Soc. 132 (2010) 15866-15868. [23] P. Villars, S. Iwata, Chem. Met. Alloys 6 (2013) 81-108. [24] L. Bonati, M. Parrinello, Phys. Rev. Lett. 121 (2018) 265701. [25] H. Niu, P.M. Piaggi, M. Invernizzi, M. Parrinello, Proc. Natl. Acad. Sci. 115 (2018) 5348-5352. [26] H. Niu, Y.I. Yang, M. Parrinello, Phys. Rev. Lett. 122 (2019) 245501. [27] M. Chen, L. Tan, H. Wang, L. Zhang, H. Niu, arXiv:2304.12665, 2023. [28] P. Ahlawat, M.I. Dar, P. Piaggi, M. Gratzel, M. Parrinello, U. Rothlisberger, Chem. Mater. 32 (2019) 529-536. [29] A. Mahata, T. Mukhopadhyay, M.A. Zaeem, J. Mater. Sci.Technol. 106 (2022) 77-89. [30] G.C. Sosso, J. Chen, S.J. Cox, M. Fitzner, P. Pedevilla, A. Zen, A. Michaelides, Chem. Rev. 116 (2016) 7078-7116. [31] L. Guo, S. Zhang, W. Feng, G. Hu, W. Li, J. Alloys Compd. 579 (2013) 583-593. [32] S. Chanda, M. Debbarma, D. Ghosh, S. Das, B. Debnath, R. Bhattacharjee, S. Chattopadhyaya, Solid State Commun. 322 (2020) 114050. [33] Z. Deng, L. Cao, F. Tang, B. Zou, J. Phys. Chem. B 109 (2005) 16671-16675. [34] J. Behler, M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401. [35] J. Behler, J. Chem. Phys. 145 (2016) 170901. [36] G.H. Gu, J. Noh, I. Kim, Y. Jung, J. Mater. Chem. A 7 (2019) 17096-17117. [37] J. Zhang, J. Pagotto, T.T. Duignan, J. Mater. Chem. A 10 (2022) 19560-19571. [38] V. Botu, R. Ramprasad, Int. J. Quantum Chem. 115 (2015) 1074-1083. [39] Y. Liu, C. Niu, Z. Wang, Y. Gan, Y. Zhu, S. Sun, T. Shen, J. Mater. Sci.Technol. 57 (2020) 113-122. [40] H. Wang, L. Zhang, J. Han, E. W, Comput. Phys. Commun. 228 (2018) 178-184. [41] H. Niu, L. Bonati, P.M. Piaggi, M. Parrinello, Nat. Commun. 11 (2020) 2654. [42] M. Yang, T. Karmakar, M. Parrinello, Phys. Rev. Lett. 127 (2021) 080603. [43] M. Yang, L. Bonati, D. Polino, M. Parrinello, Catal. Today 387 (2022) 143-149. [44] L. Zhang, H. Wang, R. Car, E. W, Phys. Rev. Lett. 126 (2021) 236001. [45] M. Galib, D.T. Limmer, Science 371 (2021) 921-925. [46] Y. Juan, Y. Dai, Y. Yang, J. Zhang, J. Mater. Sci.Technol. 79 (2021) 178-190. [47] A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. 99 (2002) 12562-12566. [48] L. Zhang, J. Han, H. Wang, R. Car, E. W, Phys. Rev. Lett. 120 (2018) 143001. [49] J. Deng, H. Niu, J. Hu, M. Chen, L. Stixrude, Phys. Rev. B 107 (2023) 064103. [50] A.P. Bartok, R. Kondor, G. Csnyi, Phys. Rev. B 87 (2013) 184115. [51] B. Cheng, R.-R. Griffiths, S.Wengert, C. Kunkel, T. Stenczel, B. Zhu, V.L. Deringer, N. Bernstein, J.T. Margraf, K. Reuter, G. Csanyi, Acc. Chem. Res. 53 (2020) 1981-1991. [52] Y. Zhang, H. Wang, W. Chen, J. Zeng, L. Zhang, H. Wang, E. W, Comput. Phys. Commun. 253 (2020) 107206. [53] J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115 (2015) 036402. [54] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561. [55] G. Kresse, J. Furthmller, Phys. Rev. B 54 (1996) 11169-11186. [56] S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. [57] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in’t Veld, A.Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271 (2022) 108171. [58] G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, Comput. Phys. Commun. 185 (2014) 604-613. [59] D.R.Lide, in: CRC Handbook of Chemistry and Physics, CRC Press, 2005, pp. 4-48. [60] V.A. Fedorov, V.A. Ganshin, Y.N. Korkishko, Phys. Status Solidi 126 (1991) K5-K7. [61] E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, H. Jonsson, Comput. Phys. Commun. 205 (2016) 13-21. [62] A. Yoshiasa, K. Koto, H. Maeda, T. Ishii, Jpn. J. Appl. Phys. 36 (1997) 781. [63] L. Lupi, A. Hudait, B. Peters, M. Grnwald, R.G. Mullen, A.H. Nguyen, V. Molinero, Nature 551 (2017) 218. [64] O. Parasyuk, L. Gulay, L. Piskach, I. Olekseyuk, J. Alloys Compd. 335 (2002) 176-180. |
[1] | Juheon Kim, Hayoung Chung. Atomistic investigation of pressure effects on sintering of bimetallic core-shell nanoparticles [J]. J. Mater. Sci. Technol., 2024, 184(0): 64-74. |
[2] | Zongde Kou, Xuteng Li, Rong Huang, Lixia Yang, Yanqing Yang, Tao Feng, Si Lan, Gerhard Wilde, Qingquan Lai, Song Tang. Stress-induced phase transformation and phase boundary sliding in Ti: An atomically resolved in-situ analysis [J]. J. Mater. Sci. Technol., 2023, 152(0): 30-36. |
[3] | Leqing Liu, Xiongjun Liu, Qing Du, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Local chemical ordering and its impact on radiation damage behavior of multi-principal element alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 13-25. |
[4] | Dongpeng Hua, Xiaorong Liu, Wan Wang, Qing Zhou, Qiaosheng Xia, Shuo Li, Junqin Shi, Haifeng Wang. Formation mechanism of hierarchical twins in the CoCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2023, 140(0): 19-32. |
[5] | Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots [J]. J. Mater. Sci. Technol., 2022, 104(0): 163-171. |
[6] | Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates [J]. J. Mater. Sci. Technol., 2022, 105(0): 226-236. |
[7] | Shaoyu Zhao, Yingyan Zhang, Jie Yang, Sritawat Kitipornchai. Folded graphene reinforced nanocomposites with superior strength and toughness: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2022, 120(0): 196-204. |
[8] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[9] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
[10] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[11] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
[12] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
[13] | Jun Jiang, Pengwan Chen, Weifu Sun. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 57(0): 92-100. |
[14] | S.H. Chen, T. Li, W.J. Chang, H.D. Yang, J.C. Zhang, H.H. Tang, S.D. Feng, F.F. Wu, Y.C Wu. On the formation of shear bands in a metallic glass under tailored complex stress fields [J]. J. Mater. Sci. Technol., 2020, 53(0): 112-117. |
[15] | K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang, Z.F. Zhang. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals [J]. J. Mater. Sci. Technol., 2020, 57(0): 159-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||