[1] J. Bach, M. Stoiber, L. Schindler, H.W. Höppel, M. Göken, Acta Mater. 186(2020) 363-373. [2] I.S. Yasnikov, Y. Estrin, A. Vinogradov, Acta Mater. 141(2017) 18-28. [3] T.G. Langdon, Acta Mater. 61(2013) 7035-7059. [4] Y. Huang, T.G. Langdon, Mater. Today 16 (2013) 85-93. [5] S. Liang, Y. Wang, H. Wang, J. Wang, S. Jiang, Mater. Lett. 330(2023) 133373. [6] J. Gao, S. Jiang, H. Zhao, Y. Huang, H. Zhang, S. Wang, G. Wu, Y. Wu, H. Wu, A. Davydov, W.M. Rainforth, Z. Lu, X. Mao, Acta Mater. 243(2023) 118538. [7] Z.N. Mao, R.C. Gu, F. Liu, Y. Liu, X.Z. Liao, J.T. Wang, Mater. Sci. Eng. A 674 (2016) 186-192. [8] H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 705 (2017) 411-419. [9] Y. Zhang, S. Sao-Joao, S. Descartes, G. Kermouche, F. Montheillet, C. Desrayaud, Mater. Sci. Eng. A 795 (2020) 139915. [10] Y. Wang, Y. Liao, R.Z. Wu, N. Turakhodjaev, H.T. Chen, J.H. Zhang, M.L. Zhang, S. Mardonakulov, Mater. Sci. Eng. A 787 (2020) 9. [11] H.W. Hoppel, M. Westermeyer, F. Kummel, M. Goken, Adv. Eng. Mater. 22(2020) 12. [12] J. Gao, S. Jiang, H. Zhang, Y. Huang, D. Guan, Y. Xu, S. Guan, L.A. Bendersky, A.V. Davydov, Y. Wu, H. Zhu, Y. Wang, Z. Lu, W.M. Rainforth, Nature 590 (2021) 262-267. [13] S. Pan, J. Yu, J. Han, Y. Zhang, Q. Peng, M. Yang, Y. Chen, X. Huang, R. Shi, C. Wang, X. Liu, Acta Mater. 243(2023) 118484. [14] N. Takata, S.H. Lee, N. Tsuji, Mater. Lett. 63(2009) 1757-1760. [15] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304 (2004) 422-426. [16] D.L. Ellis, Grcop-84: a high-temperature copper alloy for high-heat-flux applications, NASA/TM-2005-213566, 2013. [17] A.L. Rocha, I.G. Solórzano, J.B. Vander Sande, Mater. Sci. Eng. C 27 (2007) 1215-1221. [18] M. Takeda, K. Inukai, N. Suzuki, G. Shinohara, H. Hashimoto, Phys. Status Solidi A 158 (1996) 39-46. [19] M. Takeda, N. Suzuki, G. Shinohara, T. Endo, J.V. Landuyt, Phys. Status Solidi A 168 (1998) 27-35. [20] F. De Geuser, M.J. Styles, C.R. Hutchinson, A. Deschamps, Acta Mater. 101(2015) 1-9. [21] A. Takeuchi, A. Inoue, Intermetallics 18 (2010) 1779-1789. [22] W.D. Callister, D.G. Rethwisch, Hoboken, 2014. [23] H. Fu, X. Zhou, H. Xue, X. Li, K. Lu, Mater. Today 55 (2022) 66-73. [24] J. Wang, S.H. Oh, B.J. Lee, Comput. Mater. Sci. 178(2020) 109627. [25] A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20(2012) 085007. [26] J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91(1987) 4950-4963. [27] F.J. Humphreys, M. Hatherly, Oxford, 1996. [28] N.C. Eurich, P.D. Bristowe, Scr. Mater. 102(2015) 87-90. [29] Y. Rao, T.M. Smith, M.J. Mills, M. Ghazisaeidi, Acta Mater. 148(2018) 173-184. [30] J. Howe, Incorporated, 2008. [31] K. Huang, R.E. Logé, Amsterdam, 2016. [32] Y. Liu, B.R. Patterson, Acta Mater. 44(1996) 4327-4335. [33] E.A. Holm, D.L. Olmsted, S.M. Foiles, Scr. Mater 63 (2010) 905-908. [34] Thermo-Calc software package, http://www.thermocalc.com, 2022. [35] R. Kampmann, R. Wagner, P. Haasen, V. Gerold, R. Wagner, M.F. Ashby, Decompos. Alloy. Early Stages, Pergamon Press, Oxford, 1984. [36] S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath, Acta Mater. 45(1997) 2633-2638. [37] B. Rath, A. Imam, C. Pande, Phys, Mater. Phys. Mech. 1(2000) 61-66. [38] C.S. Pande, B.B. Rath, M.A. Imam, Mater. Sci. Eng. A 367 (2004) 171-175. [39] Z. Hegedűs, J. Gubicza, M. Kawasaki, N.Q. Chinh, Z. Fogarassy, T.G. Langdon, Mater. Sci. Eng. A 528 (2011) 8694-8699. |