J. Mater. Sci. Technol. ›› 2024, Vol. 170: 167-176.DOI: 10.1016/j.jmst.2023.05.065
• Research Article • Previous Articles Next Articles
Ruting Huanga, Yeyin Zhanga, Wenqiang Lia, Wanxia Zhanga, Yong Fanga, Wenrui Zhanga, Anqi Cuia, Yu Yingb, Xianyang Shia,*
Received:
2023-03-16
Revised:
2023-04-24
Accepted:
2023-05-24
Published:
2024-01-20
Online:
2024-01-16
Contact:
*E-mail address: shixi381@163.com (X. Shi).
Ruting Huang, Yeyin Zhang, Wenqiang Li, Wanxia Zhang, Yong Fang, Wenrui Zhang, Anqi Cui, Yu Ying, Xianyang Shi. Modified NiFe-MOF with defects induced by -NH2 and -SH for enhanced adsorption and photocatalytic reduction of CO2[J]. J. Mater. Sci. Technol., 2024, 170: 167-176.
[1] Z.B. Fang, T.T. Liu, J. Liu, S. Jin, X.P. Wu, X.Q. Gong, K. Wang, Q. Yin, T.F. Liu, R. Cao, H.C. Zhou, J. Am. Chem.Soc. 142 (2020) 12515-12523. [2] B. Li, L. Sun, J. Bian, N. Sun, J. Sun, L. Chen, Z. Li, L. Jing, Appl. Catal. B-Environ. 270 (2020) 118849. [3] B. Wang, S.Z. Yang, H. Chen, Q. Gao, Y.X. Weng, W. Zhu, G. Liu, Y. Zhang, Y. Ye, H. Zhu, H. Li, J. Xia, Appl. Catal. B-Environ. 277 (2020) 119170. [4] C. Li, X. Tong, P. Yu, W. Du, J. Wu, H. Rao, Z.M. Wang, J. Mater. Chem. A 7 (2019) 16622-16642. [5] Y.J. Wang, H.J. Wang, F. Luo, S. Yao, T.B. Lu, Z.M. Zhang, Appl. Catal. B-Environ. 300 (2022) 120487. [6] H. Wang, L. Zhang, Y. Zhou, S. Qiao, X. Liu, W. Wang, Appl. Catal. B-Environ. 263 (2020) 118331. [7] Y. Yang, Z. Tang, B. Zhou, J. Shen, H. He, A. Ali, Q. Zhong, Y. Xiong, C. Gao, A. Al-saedi, T.Hayat, X. Wang, Y. Zhou, Z. Zou, Appl. Catal. B-Environ. 264 (2020) 118470. [8] P. Li, X. Yan, S. Gao, R. Cao, Chem. Eng. J. 421 (2021) 129870. [9] W.Q. Li, Y.X. Wang, J.Q. Chen, N.N. Hou, Y.M. Li, X.C. Liu, R.R. Ding, G.N. Zhou, Q. Li, X.G. Zhou, Y. Mu, Appl. Catal. B-Environ. 302 (2022) 120882. [10] J. Fu, K. Liu, H. Li, J. Hu, M. Liu, Environ. Chem. Lett. 20 (2022) 243-262. [11] X. Zhao, J. Li, X. Li, P. Huo, W. Shi, Chin. J. Catal. 42 (2021) 872-903. [12] F. Guo, R.X. Li, S. Yang, X.Y. Zhang, H. Yu, J.J. Urban, W.Y. Sun, Angew. Chem.-Int. Edit. 62 (2023) e202216232. [13] D.C. Liu, T.O. Yang, R. Xiao, W.J. Liu, D.C. Zhong, Z.T. Xu, T.B. Lu, ChemSusChem 12 (2019) 2166-2170. [14] T.F. Chen, S.Y. Han, Z.P. Wang, H. Gao, L.Y. Wang, Y.H. Deng, C.Q. Wan, Y. Tian, Q. Wang, G. Wang, G.S. Li, Appl. Catal. B-Environ. 259 (2019) 118047. [15] C.G. Silva, I. Luz, F.X.Llabres i Xamena, A.Corma, H. García, Chem. Eur. J. 16 (2010) 11133-11138. [16] Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem.-Int. Edit. 51 (2012) 3364-3367. [17] A. Demessence, D.M.D’Alessandro, M.L. Foo, J.R. Long, J. Am. Chem. Soc. 131 (2009) 8784-8786. [18] N. Du, M.M. Dal-Cin, G.P. Robertson, M.D. Guiver, Macromolecules 45 (2012) 5134-5139. [19]. D.S. Biovia, Materials Studio, R2 (Dassault Systèmes BIOVIA, 2017 San Diego https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/ [20] B. Delley, J. Chem. Phys. 113 (2000) 7756-7764. [21] J. Nisar, C. Århammar, E. Jämstorp, R. Ahuja, Phys. Rev. B 84 (2011) 075120. [22] X.L. Lv, L. Feng, L.H. Xie, T. He, W. Wu, K.Y. Wang, G. Si, B. Wang, J.R. Li, H.C. Zhou, J. Am. Chem.Soc. 143 (2021) 2784-2791. [23] X.L. Lv, L. Feng, K.Y. Wang, L.H. Xie, T. He, W. Wu, J.R. Li, H.C. Zhou, Angew. Chem.-Int. Edit. 60 (2021) 2053-2057. [24] B. Delley, Mol. Simulat. 32 (2006) 117-123. [25] K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao, N. Ta, R. Si, G. Wang, X. Bao, Angew. Chem.-Int. Edit. 59 (2020) 4 814-4 821. [26] H. Zhao, Z. Xing, S. Su, S. Song, Z. Li, W. Zhou, Appl. Catal. B-Environ. 291 (2021) 120106. [27] M. Jafarnejad, M.D. Asli, F.A. Taromi, M. Manoochehri, Int. J. Biol. Macromol. 148 (2020) 201-217. [28] X. Li, Y. Pi, L. Wu, Q. Xia, J. Wu, Z. Li, J. Xiao, Appl. Catal. B-Environ. 202 (2017) 653-663. [29] J. He, Y. Zhang, X. Zhang, Y. Huang, Sci. Rep. 8 (2018) 5159. [30] L. Jiang, Y. Meng, W. Zhang, H. Yu, X. Hou, Microporous Mesoporous Mater. 306 (2020) 110476. [31] Y. Wang, Z. Zhong, Y. Muhammad, H. He, Z. Zhao, S. Nie, Z. Zhao, Chem. Eng. J. 398 (2020) 125684. [32] A. Torrisi, C. Mellot-Draznieks, R.G. Bell, J. Chem. Phys. 130 (2009) 194703. [33] M. Zhou, S. Wang, P. Yang, C. Huang, X. Wang, ACS Catal. 8 (2018) 4928-4936. [34] X. Li, Y. Pi, Q. Hou, H. Yu, Z. Li, Y. Li, J. Xiao, Chem. Commun. 54 (2018) 1917-1920. [35] L.Y. Wu, Y.F. Mu, X.X. Guo, W. Zhang, Z.M. Zhang, M. Zhang, T.B. Lu, Angew. Chem.-Int. Edit. 58 (2019) 9491-9495. [36] S. Gong, G. Zhu, R. Wang, F. Rao, X. Shi, J. Gao, Y. Huang, C. He, M. Hojam-berdiev, Appl.Catal. B-Environ. 297 (2021) 120413. [37] R. Yuan, C. Yue, J. Qiu, F. Liu, A. Li, Appl. Catal. B-Environ. 251 (2019) 229-239. [38] X. Hao, J. Zhou, Z. Cui, Y. Wang, Y. Wang, Z. Zou, Appl. Catal. B-Environ. 229 (2018) 41-51. [39] Y.F. Chen, L.L. Tan, J.M. Liu, S. Qin, Z.Q. Xie, J.F. Huang, Y.W. Xu, L.M. Xiao, C.Y. Su, Appl. Catal. B-Environ. 206 (2017) 426-433. [40] N. Liang, M. Wang, L. Jin, S. Huang, W. Chen, M. Xu, Q. He, J. Zai, N. Fang, X. Qian, ACS Appl. Mater. Interfaces 6 (2014) 11698-11705. [41] X. Huo, Y. Yang, Q. Niu, Y. Zhu, G. Zeng, C. Lai, H. Yi, M. Li, Z. An, D. Huang, Y. Fu, B. Li, L. Li, M. Zhang, Chem. Eng. J. 403 (2021) 126363. [42] W. Wang, Z. Zeng, G. Zeng, C. Zhang, R. Xiao, C. Zhou, W. Xiong, Y. Yang, L. Lei, Y. Liu, D. Huang, M. Cheng, Y. Yang, Y. Fu, H. Luo, Y. Zhou, Chem. Eng. J. 378 (2019) 122132. [43] X. Mu, J. Jiang, F. Chao, Y. Lou, J. Chen, Dalton. Trans. 47 (2018) 1895-1902. [44] H. Wang, X. Yuan, Y. Wu, G. Zeng, H. Dong, X. Chen, L. Leng, Z. Wu, L. Peng, Appl. Catal. B-Environ. 186 (2016) 19-29. [45] Y. He, L. Zhang, B. Teng, M. Fan, Environ. Sci. Technol. 49 (2015) 649-656. [46] P. Jin, L. Wang, X. Ma, R. Lian, J. Huang, H. She, M. Zhang, Q. Wang, Appl. Catal. B-Environ. 284 (2021) 119762. [47] L. Wang, P. Jin, S. Duan, H. She, J. Huang, Q. Wang, Sci. Bull. 64 (2019) 926-933. [48] J. Wang, A.S. Cherevan, C. Hannecart, S. Naghdi, S.P. Nandan, T. Gupta, D. Eder, Appl. Catal. B-Environ. 283 (2021) 119626. [49] S. Tang, X. Yin, G. Wang, X. Lu, T. Lu, Nano Res. 12 (2019) 457-462. [50] X. Yu, F. Wen, F. Zhang, P. Yang, Y. Zhao, Y. Wu, Y. Wang, Z. Liu, ChemSusChem 13 (2020) 5565-5570. [51] H. Gao, J. Wang, M. Jia, F. Yang, R.S. Andriamitantsoa, X. Huang, W. Dong, G. Wang, Chem. Eng. J. 374 (2019) 684-693. [52] C. Ning, Z. Wang, S. Bai, L. Tan, H. Dong, Y. Xu, X. Hao, T. Shen, J. Zhao, P. Zhao, Z. Li, Y. Zhao, Y.F. Song, Chem. Eng. J. 412 (2021) 128362. [53] W. Chen, B. Han, C. Tian, X. Liu, S. Liang, H. Deng, Z. Lin, Appl. Catal. B-Environ. 244 (2019) 996-1003. [54] D. Long, X. Li, Z. Yin, S. Fan, P. Wang, F. Xu, L. Wei, M.O. Tadé, S. Liu, J. Alloy. Compd. 854 (2021) 156942. [55] Y. Wang, Y. Zeng, S. Wan, S. Zhang, Q. Zhong, J. CO 2 Util. 29 (2019) 156-162. [56] S. Wang, X. Hai, X. Ding, S. Jin, Y. Xiang, P. Wang, B. Jiang, F. Ichihara, M. Os-hikiri, X.Meng, Y. Li, W. Matsuda, J. Ma, S. Seki, X. Wang, H. Huang, Y. Wada, H. Chen, J. Ye, Nat. Commun. 11 (2020) 1149. [57] C. Zhao, A. Zhou, Y. Dou, J. Zhou, J. Bai, J.R. Li, Chem. Eng. J. 416 (2021) 129155. [58] B. Pan, J. Qin, X. Wang, W. Su, Appl. Surf. Sci. 504 (2020) 144379. [59] Y.L. Yan, Q.J. Fang, J.K. Pan, J. Yang, L.L. Zhang, W. Zhang, G.L. Zhuang, X. Zhong, S.W. Deng, J.G. Wang, Chem. Eng. J. 408 (2021) 127358. [60] W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem.Soc. 141 (2019) 7615-7621. [61] S. Zhao, K. Li, J. Du, C. Song, X. Guo, A.C.S.Sustain, Chem. Eng. 9 (2021) 5942-5951. [62] K. Chen, X. Wang, Q. Li, Y.N. Feng, F.F. Chen, Y. Yu, Chem. Eng. J. 418 (2021) 129476. [63] S. Subudhi, L. Paramanik, S. Sultana, S. Mansingh, P. Mohapatra, K. Parida, J. Colloid Interface Sci. 568 (2020) 89-105. [64] J. Li, B. Huang, Q. Guo, S. Guo, Z. Peng, J. Liu, Q. Tian, Y. Yang, Q. Xu, Z. Liu, B. Liu, Appl. Catal. B-Environ. 284 (2021) 119733. |
[1] | Qiqi Zhang, Zhen Wang, Yuhang Song, Jun Fan, Tao Sun, Enzhou Liu. S-scheme regulated Ni2P-NiS/twinned Mn0.5Cd0.5S hetero-homojunctions for efficient photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2024, 169(0): 148-157. |
[2] | Xiaojie Mo, Xiaohan Zhang, Biyun Lin, Chuangyu Ning, Ming Li, Hua Liao, Zhihong Chen, Xin Wang. Boosting interfacial S-scheme charge transfer and photocatalytic H2-production activity of 1D/2D WO3/g-C3N4 heterojunction by molecular benzene-rings integration [J]. J. Mater. Sci. Technol., 2023, 145(0): 174-184. |
[3] | Jiani Lu, Shaonan Gu, Hongda Li, Yinan Wang, Meng Guo, Guowei Zhou. Review on multi-dimensional assembled S-scheme heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2023, 160(0): 214-239. |
[4] | Dong-Eun Lee, Naresh Mameda, Kasala Prabhakar Reddy, B. Moses Abraham, Wan-Kuen Jo, Surendar Tonda. Bifunctional S-scheme hybrid heterojunction comprising CdS nanorods and BiOIO3 nanosheets for efficient solar-induced antibiotic degradation and highly-selective CO2 reduction [J]. J. Mater. Sci. Technol., 2023, 161(0): 74-87. |
[5] | Han Li, Bicheng Zhu, Bei Cheng, Guoqiang Luo, Jingsan Xu, Shaowen Cao. Single-atom Cu anchored on N-doped graphene/carbon nitride heterojunction for enhanced photocatalytic H2O2 production [J]. J. Mater. Sci. Technol., 2023, 161(0): 192-200. |
[6] | Mimi Luo, Guanjie Jiang, Min Yu, Yupeng Yan, Zhangjie Qin, Yang Li, Qin Zhang. Constructing crystalline homophase carbon nitride S-scheme heterojunctions for efficient photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2023, 161(0): 220-232. |
[7] | Ruiqi Gao, Junxian Bai, Rongchen Shen, Lei Hao, Can Huang, Lei Wang, Guijie Liang, Peng Zhang, Xin Li. 2D/2D covalent organic framework/CdS Z-scheme heterojunction for enhanced photocatalytic H2 evolution: Insights into interfacial charge transfer mechanism [J]. J. Mater. Sci. Technol., 2023, 137(0): 223-231. |
[8] | Haozhen Zhang, Jingjing Liu, Yong Zhang, Bei Cheng, Bicheng Zhu, Linxi Wang. BiOBr/COF S-scheme photocatalyst for H2O2 production via concerted two-electron pathway [J]. J. Mater. Sci. Technol., 2023, 166(0): 241-249. |
[9] | Chunli Wang, Nazhen Liu, Xia Zhao, Yong Tian, Xuwei Chen, Yanfeng Zhang, Liang Fan, Baorong Hou. C-doped BiOCl/Bi2S3 heterojunction for highly efficient photoelectrochemical detection and photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2023, 164(0): 188-197. |
[10] | Peng Ju, Lei Hao, Yu Zhang, Jianchao Sun, Kunpeng Dou, Zhaoxia Lu, Dankui Liao, Xiaofan Zhai, Chengjun Sun. In-situ topotactic construction of novel rod-like Bi2S3/Bi5O7I p-n heterojunctions with highly enhanced photocatalytic activities [J]. J. Mater. Sci. Technol., 2023, 135(0): 126-141. |
[11] | Hongru Zhou, Jun Ke, Desheng Xu, Jie Liu. MnWO4 nanorods embedded into amorphous MoSx microsheets in 2D/1D MoSx/MnWO4 S-scheme heterojunction for visible-light photocatalytic water oxidation [J]. J. Mater. Sci. Technol., 2023, 136(0): 169-179. |
[12] | Shaoxuan Pang, Yilin Dong, Dongyu Xu, Qiuwen Wang, Weihong Gao, Lijun Zhang, Kang Wang, Guangming Zhang, Longyi Lv, Yuguo Xia, Zhijun Ren, Pengfei Wang. Strong interface interaction and internal electric field promote electron transfer of Bi2O2S/NiFe2O4 heterojunction for photocatalytic antibiotic degradation [J]. J. Mater. Sci. Technol., 2023, 158(0): 145-155. |
[13] | Jiahui Hua, Zhongliao Wang, Jinfeng Zhang, Kai Dai, Chunfeng Shao, Ke Fan. A hierarchical Bi-MOF-derived BiOBr/Mn0.2Cd0.8S S-scheme for visible-light-driven photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2023, 156(0): 64-71. |
[14] | Yuhua Ma, Xiadiye Aihemaiti, Kezhen Qi, Shiyin Wang, Yanjie Shi, Zhuanhu Wang, Minghe Gao, Fuhe Gai, Yulian Qiu. Construction of oxygen-vacancies-rich S-scheme BaTiO3/red phosphorous heterojunction for enhanced photocatalytic activity [J]. J. Mater. Sci. Technol., 2023, 156(0): 217-229. |
[15] | Tong Hu, Guanjie Jiang, Yupeng Yan, Shuai Lan, Junjie Xie, Qin Zhang, Yang Li. Facile synthesis of Fe single-atom porous photocatalysts via direct metal atomization achieving efficient photocatalytic nitrogen fixation [J]. J. Mater. Sci. Technol., 2023, 167(0): 248-257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||