J. Mater. Sci. Technol. ›› 2023, Vol. 164: 79-94.DOI: 10.1016/j.jmst.2023.04.034
• Research Article • Previous Articles Next Articles
Xiaobing Hu1, Yiming Chen1, Jianlin Lu, Chen Xing, Jiajun Zhao, Qingfeng Wu, Yuhao Jia, Junjie Li*, Zhijun Wang, Jincheng Wang*
Received:
2023-03-02
Revised:
2023-04-06
Accepted:
2023-04-06
Published:
2023-11-20
Online:
2023-11-15
Contact:
*E-mail addresses: lijunjie@nwpu.edu.cn (J. Li), jchwang@nwpu.edu.cn (J. Wang).
About author:
1These authors contributed equally to this work.
Xiaobing Hu, Yiming Chen, Jianlin Lu, Chen Xing, Jiajun Zhao, Qingfeng Wu, Yuhao Jia, Junjie Li, Zhijun Wang, Jincheng Wang. Three-step learning strategy for designing 15Cr ferritic steels with enhanced strength and plasticity at elevated temperature[J]. J. Mater. Sci. Technol., 2023, 164: 79-94.
[1] F. Masuyama, ISIJ Int. 41(2001) 612-625. [2] D. Rojas, J. Garcia, O. Prat, G. Sauthoff, A.R. Kaysser-Pyzalla, Mater. Sci. Eng. A 528 (2011) 5164-5176. [3] V. Knezevic, G. Sauthoff, J. Vilk, G. Inden, A. Schneider, R. Agamennone, W. Blum, Y. Wang, A. Scholz, C. Berger, J. Ehlers, L. Singheiser, ISIJ Int. 42(2002) 1505-1514. [4] O. Prat, J. Garcia, D. Rojas, C. Carrasco, G. Inden, Acta Mater. 58(2010) 6142-6153. [5] H.K. Danielsen, Mater. Sci. Technol. 32(2016) 126-137. [6] K. Kimura, H. Kushima, F. Abe, Key Eng. Mater.171-174(20 0 0) 483-490. [7] Y. Toda, K. Seki, K. Kimura, F. Abe, ISIJ Int. 43(2003) 112-118. [8] Y. Toda, H. Tohyama, H. Kushima, K. Kimura, F. Abe, JSME Int. J.Ser. A-Solid Mech. Mater. Eng. 48(2005) 35-40. [9] Y. Toda, H. Tohyama, H. Kushima, K. Kimura, F. Abe, JSME Int. J.Ser. A-Solid Mech. Mater. Eng. 48(2005) 125-131. [10] M. Shibuya, Y. Toda, K. Sawada, H. Kushima, K. Kimura, Mater. Sci. Eng. A 528 (2011) 5387-5393. [11] D. Ye, J. Li, W. Jiang, J. Su, K.Y. Zhao, Mater. Des. 41(2012) 16-22. [12] M. Shibuya, Y. Toda, K. Sawada, H. Kushima, K. Kimura, Mater. Sci. Eng. A 592 (2014) 1-5. [13] M. Shibuya, Y. Toda, K. Sawada, H. Kushima, K. Kimura, Mater. Sci. Eng. A 652 (2016) 1-6. [14] Z. Yuan, Q.S. Ma, B.Y. Lu, H.J. Li, H.J. Zhang, M.L. Gong, H.L. Zhang, Q.Z. Gao, Mater. Sci. Eng. A 847 (2022) 143321. [15] L. Sun, T.H. Simm, T.L. Martin, S. McAdam, D.R. Galvin, K.M. Perkins, P.A.J.Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, H.K.D.H. Bhadeshia, Acta Mater. 149(2018) 285-301. [16] M.J.S.Rawlings, C.H. Liebscher, M. Asta, D.C. Dunand, Acta Mater. 128(2017) 103-112. [17] S.I. Baik, S.Y. Wang, P.K. Liaw, D.C. Dunand, Acta Mater. 157(2018) 142-154. [18] A.E. Fedoseeva, I.S. Nikitin, N.R. Dudova, R.O. Kaibyshev, Phys. Metals Metallogr. 121(2020) 1233-1239. [19] F.S. Yin, L.Q. Tian, B. Xue, X.-B. Jiang, L. Zhou, Metall. Mater. Trans. A 43 (2012) 2203-2209. [20] S.Z. Li, Z. Eliniyaz, F. Sun, Y.Z. Shen, L.T. Zhang, A.D. Shan, Mater. Sci. Eng. A 559 (2013) 882-888. [21] A. Zieliński, G. Golański, M. Sroka, Mater. Sci. Eng. A 796 (2020) 139944. [22] C.Z. Zhu, Y. Yuan, J.M. Bai, P. Zhang, J.B. Yan, C.Y. You, Y.F. Gu, Mater. Sci. Eng.A 740-741(2019) 71-81. [23] S.S. Samant, I.V. Singh, R.N. Singh, Mater. Sci. Eng. A 738 (2018) 135-152. [24] M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, Acta Mater. 127(2017) 165-177. [25] B. Wang, Z.D. Liu, S.C. Cheng, C.M. Liu, J.Z. Wang, J. Iron Steel Res. Int. 21(2014) 765-773. [26] X. Guo, J.M. Gong, Y. Jiang, X.W. Wang, Y.P. Zhao, Mater. High Temp. 32(2015) 566-574. [27] P. Liu, Z.K. Chu, Y. Yuan, D.H. Wang, C.Y. Cui, G.C. Hou, Y.Z. Zhou, X.F. Sun, Acta Metall. Sin.(Engl. Lett.) 32(2019) 517-525. [28] C.B. Shi, X. Zhu, X. Zheng, P. Lan, J. Li, Mater. Sci. Eng. A 854 (2022) 143822. [29] P. Duan, Z.D. Liu, B. Li, J.Y. Li, X.Q. Tao, High Temp. Mater. Process. 39(2020) 545-555. [30] O. Mamun, M. Wenzlick, A. Sathanur, J. Hawk, R. Devanathan, NPJ Mater. Degrad. 5(2021) 20. [31] X.B. Hu, J.J. Zhao, Y.M. Chen, J.J. Li, Z.J. Wang, J.C. Wang, Acta Mater. 238(2022) 118230. [32] G.L.W.Hart, T. Mueller, C.Toher, S. Curtarolo, Nat. Rev. Mater. 6(2021) 730-755. [33] Y.J. Hu, X.B. Hu, L. Zhang, T. Zheng, J.X. You, B.X. Jia, Y.B. Ma, X.Y. Du, L. Zhang, J.C. Wang, B. Che, T. Chen, S.Z. Liu, Adv. Energy Mater. 12(2022) 2201463. [34] X.B. Hu, J.J. Zhao, Y.M. Chen, Y.J. Wang, J.J. Li, Q.F. Wu, Z.J. Wang, J.C. Wang, J. Mater. Inf. 2(2022) 5. [35] X.B. Hu, J.J. Li, Z.J. Wang, J.C. Wang, Mater. Des. 201(2021) 109497. [36] X.B. Hu, J.C. Wang, Y.Y. Wang, J.J. Li, Z.J. Wang, Y.Y. Dang, Y.F. Gu, Comput. Mater. Sci. 155(2018) 331-339. [37] Q.F. Wu, Z.J. Wang, X.B. Hu, T. Zheng, Z.S. Yang, F. He, J.J. Li, J.C. Wang, Acta Mater. 182(2020) 278-286. [38] T. Zheng, X.B. Hu, F. He, Q.F. Wu, B. Han, D. Chen, J.J. Li, Z.J. Wang, J.C. Wang, J.J. Kai, Z.H. Xia, C.T. Liu, J. Mater. Sci.Technol. 69(2021) 156-167. [39] Y. Yao, T. Sullivan, F. Yan, J.Q. Gong, L. Li, Scr. Mater. 209(2022) 114366. [40] B. Krawczyk, Prog. Artif. Intell. 5(2016) 221-232. [41] T. Lookman, P.V. Balachandran, D. Xue, J. Hogden, J. Theiler, Curr. Opin. Solid State Mat.Sci. 21(2017) 121-128. [42] P.V. Balachandran, B. Kowalski, A. Sehirlioglu, T. Lookman, Nat. Commun. 9(2018) 1668. [43] R. Katsube, K. Terayama, R. Tamura, Y. Nose, ACS Mater. Lett. 2(2020) 571-575. [44] Y. Tian, R.H. Yuan, D.Z. Xue, Y.M. Zhou, Y.F. Wang, X.D. Ding, J. Sun, T. Lookman, Adv. Sci. 8(2021) 2003165. [45] Y.F. Chen, Y. Tian, Y.M. Zhou, D.Q. Fang, X.D. Ding, J. Sun, D.Z. Xue, J. Alloy. Compd. 844(2020) 156159. [46] A.M. Gopakumar, P.V. Balachandran, D. Xue, J.E. Gubernatis, T. Lookman, Sci. Rep. 8(2018) 3738. [47] A. Mannodi-Kanakkithodi, G. Pilania, R. Ramprasad, T. Lookman, J.E. Gubernatis, Comput. Mater. Sci. 125(2016) 92-99. [48] M.F. Ashby, Acta Mater. 48(20 0 0) 359-369. [49] P.V. Balachandran, D. Xue, J. Theiler, J. Hogden, T. Lookman, Sci. Rep. 6(2016) 19660. [50] X.B. Hu, J.J. Zhao, J.J. Li, Z.J. Wang, Y.M. Chen, J.C. Wang, Adv. Theory Simul. 5(2022) 2100411. [51] D.W. Marquardt, R.D. Snee, Am. Stat. 29(1975) 3-20. [52] W.S. Noble, Nat. Biotechnol. 24(2006) 1565-1567. [53] A. Liaw, M. Wiener, R News 2 (2001) 18-22. [54] E. Schulz, M. Speekenbrink, A. Krause, J. Math. Psychol. 85(2018) 1-16. [55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, J. Mach. Learn.Res. 12(2011) 2825-28306. [56] Q. Zhang, J.J. Li, X.B. Hu, S. Tang, Z.J. Wang, J.C. Wang, J. Non-Cryst. Solids 588 (2022) 121637. [57] J.J. Zhao, J.J. Li, X.B. Hu, Y.J. Wang, Y.M. Chen, F. He, Z.J. Wang, Z.L. Zhao, J.C. Wang, Comput. Mater. Sci. 214(2022) 111694. [58] S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature 544 (2017) 460-464. [59] S.I. Baik, M.J.S. Rawlings, D.C. Dunand, Mater. Sci. Eng. A 776 (2020) 138987. [60] X. Zhang, L.J. Fan, Y.L. Xu, J. Li, X.S. Xiao, L.Z. Jiang, Mater. Des. 65(2015) 682-689. [61] N. Lim, H. Park, S. Kim, C. Park, Met. Mater. Int. 18(2012) 647-654. [62] M. Wendler, A. Weiß, L. Krüger, J. Mola, A. Franke, A. Kovalev, S. Wolf, Adv. Eng. Mater. 15(2013) 558-565. [63] M. Calcagnotto, D. Ponge, D. Raabe, Metall. Mat. Trans. A 43 (2012) 37-46. |
[1] | Zhichao Lu, Yibo Zhang, Wenyue Li, Jinyue Wang, Xiongjun Liu, Yuan Wu, Hui Wang, Dong Ma, Zhaoping Lu. Materials genome strategy for metallic glasses [J]. J. Mater. Sci. Technol., 2023, 166(0): 173-199. |
[2] | Yimian Chen, Shuize Wang, Jie Xiong, Guilin Wu, Junheng Gao, Yuan Wu, Guoqiang Ma, Hong-Hui Wu, Xinping Mao. Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning [J]. J. Mater. Sci. Technol., 2023, 132(0): 213-222. |
[3] | Bin Xu, Haiqing Yin, Xue Jiang, Cong Zhang, Ruijie Zhang, Yongwei Wang, Xuanhui Qu, Zhenghua Deng, Guoqiang Yang, Dil Faraz Khan. Data-driven design of Ni-based turbine disc superalloys to improve yield strength [J]. J. Mater. Sci. Technol., 2023, 155(0): 175-191. |
[4] | Xinming Feng, Zhilei Wang, Lei Jiang, Fan Zhao, Zhihao Zhang. Simultaneous enhancement in mechanical and corrosion properties of Al-Mg-Si alloys using machine learning [J]. J. Mater. Sci. Technol., 2023, 167(0): 1-13. |
[5] | Ji-Chang Ren, Junjun Zhou, Christopher J. Butch, Zhigang Ding, Shuang Li, Yonghao Zhao, Wei Liu. Predicting single-phase solid solutions in as-sputtered high entropy alloys: High-throughput screening with machine-learning model [J]. J. Mater. Sci. Technol., 2023, 138(0): 70-79. |
[6] | Feiyang Wang, Hong-Hui Wu, Linshuo Dong, Guangfei Pan, Xiaoye Zhou, Shuize Wang, Ruiqiang Guo, Guilin Wu, Junheng Gao, Fu-Zhi Dai, Xinping Mao. Atomic-scale simulations in multi-component alloys and compounds: A review on advances in interatomic potential [J]. J. Mater. Sci. Technol., 2023, 165(0): 49-65. |
[7] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
[8] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
[9] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[10] | Xin Li, Guangcun Shan, C.H. Shek. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability [J]. J. Mater. Sci. Technol., 2022, 103(0): 113-120. |
[11] | Xiaoxiao Geng, Xinping Mao, Hong-Hui Wu, Shuize Wang, Weihua Xue, Guanzhen Zhang, Asad Ullah, Hao Wang. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels [J]. J. Mater. Sci. Technol., 2022, 107(0): 207-215. |
[12] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[13] | Hao-Xuan Liu, Hai-Le Yan, Nan Jia, Shuai Tang, Daoyong Cong, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, LiangZuo . Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys [J]. J. Mater. Sci. Technol., 2022, 131(0): 1-13. |
[14] | Defang Tu, Jianqi Yan, Yunbo Xie, Jun Li, Shuo Feng, Mingxu Xia, Jianguo Li, Alex Po Leung. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning [J]. J. Mater. Sci. Technol., 2022, 96(0): 241-247. |
[15] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||