J. Mater. Sci. Technol. ›› 2023, Vol. 159: 99-111.DOI: 10.1016/j.jmst.2023.02.049
• Research Article • Previous Articles Next Articles
Mahdieh Razi Asramia, Milad Jourshabania, Min Hee Parka, Daiha Shinb, Byeong-Kyu Leea,*
Received:
2023-01-05
Revised:
2023-02-12
Accepted:
2023-02-18
Published:
2023-10-01
Online:
2023-04-11
Contact:
*E-mail address: . Mahdieh Razi Asrami, Milad Jourshabani, Min Hee Park, Daiha Shin, Byeong-Kyu Lee. A unique and well-designed 2D graphitic carbon nitride with sponge-like architecture for enhanced visible-light photocatalytic activity[J]. J. Mater. Sci. Technol., 2023, 159: 99-111.
[1] S.P. Li, C.L. Liu, H.J. Liu, W. Lv, G.G. Liu, J. Hazard. Mater. 422 (2022) 126974. [2] M. Bilal, H.M.N.Iqbal, D. Barceló, Sci. Total Environ. 689 (2019) 160-177. [3] A.N. Ademakinwa, J. Hazard. Mater. 419 (2021) 126480. [4] Y.M. Hunge, A .A . Yadav, S.Khan, K. Takagi, N. Suzuki, K. Teshima, C. Terashima, A. Fujishima, J. Colloid Interface Sci. 582 (2021) 1058-1066. [5] X. Zheng, Z. Zhang, S. Meng, Y. Wang, D. Li, Chem. Eng. J. 393 (2020) 124676. [6] M. Jourshabani, B.K. Lee, Z. Shariatinia, Appl. Catal. B-Environ. 276 (2020) 119157. [7] M. Jourshabani, Z. Shariatinia, A. Badiei, J. Mater. Sci.Technol. 34 (2018) 1511-1525. [8] W. Zhao, T.T. She, J.Y. Zhang, G.X. Wang, S.J. Zhang, W. Wei, G. Yang, L.L. Zhang, D.H. Xia, Z.P. Cheng, J. Mater. Sci.Technol. 85 (2021) 18-29. [9] L. Lei, H.Q. Fan, Y.X. Jia, X.B. Wu, Q. Zhong, W.J. Wang, Appl. Surf. Sci. 606 (2022) 154938. [10] T. Mahvelati-Shamsabadi, H. Fattahimoghaddam, B.K. Lee, H. Ryu, J.I. Jang, Chem. Eng. J. 423 (2021) 130067. [11] Y.F. Chen, W.X. Huang, D.L. He, Y.T. Situ, H. Huang, ACS Appl. Mater. Interfaces 6 (2014) 14 405-14 414. [12] H. Moussa, B. Chouchene, T. Gries, L. Balan, K. Mozet, G. Medjahdi, R. Schneider, J. ChemCatChem. 10 (2018) 4 973-4 983. [13] M. Jourshabani, B.-.K. Lee, ACS Appl. Mater. Interfaces 13 (2021) 31785-31798. [14] Y.Y. Shang, H.Q. Fan, Y.Q. Chen, W.Q. Dong, W. Wang, J. Alloys Compd. 933 (2023) 167620. [15] W. Wang, J.J. Fang, H. Chen, J. Alloys Compd. 819 (2020) 153064. [16] X.B. Wu, H.Q. Fan, W.J. Wang, L. Lei, X.Y. Chang, L.T. Ma, ChemSusChem 15 (2022) e202201268. [17] X.B. Wu, H.Q. Fan, W.J. Wang, L. Lei, X.Y. Chang, L.T. Ma, J. Mater. Chem. A 10 (2022) 17817-17826. [18] M. Razavi-Esfali, T. Mahvelati-Shamsabadi, H. Fattahimoghaddam, B.-.K. Lee, Chem.Eng. J. 419 (2021) 129503. [19] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159-7329. [20] M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem.Soc. 135 (2013) 7118-7121. [21] J. Xu, Q.Z. Gao, Z.P. Wang, Y. Zhu, Appl. Catal. B-Environ. 291 (2021) 120059. [22] M. Jourshabani, M.R. Asrami, B.K. Lee, Appl. Catal. B-Environ. 302 (2022) 120839. [23] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1968) 62-69. [24] G. Kortüm, W. Braun, G. Herzog, Angew. Chem. Int. Edit. (1963) 333-341. [25] J.G. Yu, B. Wang, Appl. Catal. B-Environ. 94 (2010) 295-302. [26] T. Wu, Q.Y. He, Z.F. Liu, B.B. Shao, Q.H. Liang, Y. Pan, J. Huang, Z. Peng, Y. Liu, C.H. Zhao, J. Hazard. Mater. 424 (2022) 127177. [27] X.L. Zhao, X.P. Yi, W.D. Pan, Y.F. Wang, S.J. Luo, Y.G. Zhang, R.J. Xie, D.Y.C.Leung, J. Mater. Sci. Technol. 133 (2023) 135-144. [28] P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770. [29] J.L. Yuan, X. Liu, Y.H. Tang, Y.X. Zeng, L.L. Wang, S.Q. Zhang, T. Cai, Y.T. Liu, S.L. Luo, Y. Pei, Appl. Catal. B-Environ. 237 (2018) 24-31. [30] Q. Liang, Z. Li, Z.H. Huang, F. Kang, Q.H. Yang, Adv. Funct. Mater. 25 (2015) 6885-6892. [31] J.H. Li, B.A. Shen, Z.H. Hong, B.Z. Lin, B.F. Gao, Y.L. Chen, Chem. Commun. 48 (2012) 12017-12019. [32] M. Jourshabani, S.H. Yun, M.R. Asrami, B.-.K. Lee, Chem.Eng. J. 427 (2022) 131710. [33] C.Y. Feng, L. Tang, Y.C. Deng, J.J. Wang, Y.N. Liu, X.L. Ouyang, H.R. Yang, J.F. Yu, J.J. Wang, Appl. Catal. B-Environ. 281 (2021) 119539. [34] D. Mitoraj, H. Kisch, Chem. Eur. J. 16 (2010) 261-269. [35] Z.W. Tong, D. Yang, Z. Li, Y.H. Nan, F. Ding, Y.C. Shen, Z.Y. Jiang, ACS Nano 11 (2017) 1103-1112. [36] Y.D. Li, Y.Q. Jiang, Z.H. Ruan, K.F. Lin, Z.B. Yu, Z.F. Zheng, X.Z. Xu, Y. Yuan, J. Mater. Chem. 5 (2017) 21300-21312. [37] T.K.A.Nguyen, T.T. Pham, B. Gendensuren, E.S. Oh, E. Shin, J. Mater. Sci. Technol. 103 (2022) 232-243. [38] C. Guan, J. Jiang, S. Pang, X. Chen, R.D. Webster, T.T. Lim, Chem. Eng. J. 387 (2020) 123726. [39] H. Jung, T.T. Pham, E.W. Shin, J. Alloys Compd. 788 (2019) 1084-1092. [40] P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem.Lett. 9 (2018) 6 814-6 817. [41] J. Xu, M. Fujitsuka, S. Kim, Z.P. Wang, T. Majima, Appl. Catal. B-Environ. 241 (2019) 141-148. [42] J. Xu, Q.Z. Gao, X.J. Bai, Z.P. Wang, Y.F. Zhu, Catal. Today 332 (2019) 227-235. [43] Q. Liu, X.L. Wang, Q. Yang, Z.G. Zhang, X.M. Fang, Appl. Surf. Sci. 450 (2018) 46-56. [44] S. Nayak, L. Mohapatra, K. Parida, J. Mater. Chem. A 3 (2015) 18622-18635. [45] J.Y. Liu, W.J. Fang, Z.D. Wei, Z. Qin, Z. Jiang, W.F. Shangguan, Appl. Catal. B-Environ. 238 (2018) 465-470. [46] X. Li, S.X. Zhang, M.M. Zhang, M.W. Yu, H. Chen, H.W. Yang, Q. Xu, J. Hazard. Mater. 409 (2021) 124990. [47] K.Y.A.Lin, Z.Y. Zhang, Chem. Eng. J. 313 (2017) 1320-1327. [48] B.C. Zhu, P.F. Xia, W.K. Ho, J.G. Yu, Appl. Surf. Sci. 344 (2015) 188-195. [49] G. Marcì, E. García-López, F. Pomilla, L. Palmisano, A. Zaffora, M. Santamaria, I. Krivtsov, M. Ilkaeva, Z. Barbieriková, V. Brezová, Catal. Today 328 (2019) 21-28. [50] Y.L. Guo, Y.J. Gao, X. Li, G.L. Zhuang, K.C. Wang, Y. Zheng, D.H. Sun, J.L. Huang, Q.B. Li, Chem. Eng. J. 362 (2019) 41-52. [51] X. Zhao, P.H. Du, Z.Q. Cai, T. Wang, J. Fu, W. Liu, Environ. Pollut. 232 (2018) 580-590. [52] H.Z. Zhao, L. Xiang, J.F. Li, Z.Y. Yang, J. Fang, C. Zhao, S.Q. Xu, Z.W. Cai, Rapid Commun. Mass Spectrom. 30 (2016) 1901-1913. [53] E. Kirillov, J.-.F. Carpentier, E.Bunel, Dalton Trans. 44 (2015) 16212-16223. [54] X.Y. Zhang, R. Sun, S.X. Sun, F.F. Ren, X.R. Chen, L. Wu, R. Xing, ACS Omega 4 (2019) 6068-6076. [55] J. Gao, J. Song, J.S. Ye, X.D. Duan, D.D. Dionysiou, J.S. Yadav, M.N. Nadagouda, L.X. Yang, S.L. Luo, Water Res. 190 (2021) 116755. [56] J.W. Lin, Y.Y. Hu, L.X. Wang, D.H. Liang, X. Ruan, S.C. Shao, Chem. Eng. J. 382 (2020) 122931. [57] M.H. Kester, S. Bulduk, D. Tibboel, W. Meinl, H. Glatt, C.N. Falany, M.W. Coughtrie, A. Bergman, S.H. Safe, G.G. Kuiper, Endocrinology 141 (2000) 1897-1900. [58] D. Juretic, H. Kusic, D.D. Dionysiou, B. Rasulev, I. Peternel, A.L. Bozic, Chem. Eng. J. 276 (2015) 261-273. [59] Y. Wen, J. He, X. Liu, J.J. Li, Y.H. Zhao, Environ. Toxicol. Pharmacol. 34 (2012) 200-208. [60] D. Tsukamoto, Y. Shiraishi, T. Hirai, Catal. Sci. Technol. 3 (2013) 2270-2277. [61] C. Sonntag, Free-radical-induced DNA Damage and Its repair: a Chemical Perspective, Springer, Berlin, 2006. |
[1] | Xiaolong Zhao, Xiaoping Yi, Wending Pan, Yifei Wang, Shijing Luo, Yingguang Zhang, Ruijie Xie, Dennis Y.C. Leung. UV light-induced oxygen doping in graphitic carbon nitride with suppressed deep trapping for enhancement in CO2 photoreduction activity [J]. J. Mater. Sci. Technol., 2023, 133(0): 135-144. |
[2] | Shishi Shen, Xibao Li, Yingtang Zhou, Lu Han, Yu Xie, Fang Deng, Juntong Huang, Zhi Chen, Zhijun Feng, Jilin Xu, Fan Dong. Novel BiOBr/Bi2S3 high-low junction prepared by molten salt method for boosting photocatalytic degradation and H2O2 production [J]. J. Mater. Sci. Technol., 2023, 155(0): 148-159. |
[3] | Xiaotong Feng, Lifen Gu, Naiyu Wang, Qiaosheng Pu, Guangli Liu. Fe/N co-doped nano-TiO2 wrapped mesoporous carbon spheres for synergetically enhanced adsorption and photocatalysis [J]. J. Mater. Sci. Technol., 2023, 135(0): 54-64. |
[4] | Yabin Jiang, Chi Cao, Yueyang Tan, Qianwen Chen, Lei Zeng, Wensheng Yang, Zongzhao Sun, Limin Huang. A facile method to introduce a donor-acceptor system into polymeric carbon nitride for efficient photocatalytic overall water splitting [J]. J. Mater. Sci. Technol., 2023, 141(0): 32-41. |
[5] | Peng Ju, Yu Zhang, Lei Hao, Jiazhen Cao, Xiaofan Zhai, Kunpeng Dou, Fenghua Jiang, Chengjun Sun. 1D Bi2S3 nanorods modified 2D BiOI nanoplates for highly efficient photocatalytic activity: Pivotal roles of oxygen vacancies and Z-scheme heterojunction [J]. J. Mater. Sci. Technol., 2023, 142(0): 45-59. |
[6] | Lu Zhang, Jianhao Qiu, Guanglu Xia, Dingliang Dai, Xiang Zhong, Jianfeng Yao. Constructing a Z-scheme Fe-MOF-based heterostructure for visible-light-driven oxidation of aromatic alcohol in ambient air [J]. J. Mater. Sci. Technol., 2023, 138(0): 214-220. |
[7] | Chao Liu, Qinfang Zhang, Zhigang Zou. Recent advances in designing ZnIn2S4-based heterostructured photocatalysts for hydrogen evolution [J]. J. Mater. Sci. Technol., 2023, 139(0): 167-188. |
[8] | Xingxing Yang, Lina Sheng, Yongli Ye, Jiadi Sun, Zaijun Li, Xiao Ning, Jin Cao, Xiulan Sun. Recent advances in metal-free CDs/g-C3N4 photocatalysts: Synthetic strategies, mechanism insight, and applications [J]. J. Mater. Sci. Technol., 2023, 150(0): 11-26. |
[9] | Yong Wang, Chengxin Zeng, Liting Wu, Yalin Dong, Yu Zhang, Dingyi Yang, Wen Hu, Jian Hao, Hongzhe Pan, Rusen Yang. Constructing metal-free heterophotocatalyst using two-dimensional carbon nitride sheets and violet phosphorene for highly efficient visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2023, 146(0): 113-120. |
[10] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
[11] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[12] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
[13] | Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr [J]. J. Mater. Sci. Technol., 2022, 109(0): 276-281. |
[14] | Bo Su, Haowei Huang, Zhengxin Ding, Maarten B.J. Roeffaers, Sibo Wang, Jinlin Long. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 124(0): 164-170. |
[15] | Zicong Jiang, Bei Cheng, Yong Zhang, S. Wageh, Ahmed A. Al‐Ghamdi, Jiaguo Yu, Linxi Wang. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production [J]. J. Mater. Sci. Technol., 2022, 124(0): 193-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||