J. Mater. Sci. Technol. ›› 2023, Vol. 144: 15-27.DOI: 10.1016/j.jmst.2022.09.058
• Research Article • Previous Articles Next Articles
Yun Zhenga,1, Junpo Guoa,1, De Ningb,1, Yike Huanga, Wen Leia,c, Jing Lia, Jianding Lid, Götz Schucke, Jingjun Shena, Yan Guoa, Qi Zhanga, Hao Tianf, Hou Iana,*, Huaiyu Shaoa,*
Received:
2022-08-03
Revised:
2022-09-22
Accepted:
2022-09-29
Published:
2023-05-01
Online:
2022-11-25
Contact:
* E-mail addresses: houian@um.edu.mo (H. Ian), hshao@um.edu.mo (H. Shao).
About author:
1 These authors contributed equally to this work.
Yun Zheng, Junpo Guo, De Ning, Yike Huang, Wen Lei, Jing Li, Jianding Li, Götz Schuck, Jingjun Shen, Yan Guo, Qi Zhang, Hao Tian, Hou Ian, Huaiyu Shao. Design of metal-organic frameworks for improving pseudo-solid-state magnesium-ion electrolytes: Open metal sites, isoreticular expansion, and framework topology[J]. J. Mater. Sci. Technol., 2023, 144: 15-27.
[1] F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter, R. Schmuch, Nat. Energy 6 (2021) 123-134. [2] B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928-935. [3] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, J. Power Sources 257 (2014) 421-443. [4] L.W. Ji, Z. Lin, M. Alcoutlabi, X.W. Zhang, Energy Environ. Sci. 4(2011) 2682-2699. [5] R. Deivanayagam, B.J. Ingram, R. Shahbazian-Yassar, Energy Storage Mater. 21(2019) 136-153. [6] P.W. Jaschin, Y. Gao, Y. Li, S.H. Bo, J. Mater. Chem. A 8 (2020) 2875-2897. [7] K. Tang, A.B. Du, S.M. Dong, Z.L. Cui, X. Liu, C.L. Lu, J.W. Zhao, X.H. Zhou, G. L. Cui, Adv. Mater. 32(2020) 1904987. [8] L. Hu, L. Li, Y.Y. Zhang, X.H. Tan, H. Yang, X.M. Lin, Y.X. Tong, J. Mater. Sci.Technol. 127(2022) 124-132. [9] Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy. 9(2021) 1922-1941. [10] C. Liu, Y.M. Zhu, Q. Luo, B. Liu, Q.F. Gu, Q. Li, J. Mater. Sci.Technol. 34(2018) 2235-2239. [11] Q. Luo, Q.F. Gu, B. Liu, T.F. Zhang, W.Q. Liu, Q. Li, J. Mater. Chem. A 6 (2018) 23308-23317. [12] Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci.Technol. 44(2020) 171-190. [13] A .A. Yaroshevsky, Geochem.Int. 44(2006) 48-55. [14] X.R. Chen, S.C. Ning, Q.C. Le, H.N. Wang, Q. Zou, R.Z. Guo, J. Hou, Y.H. Jia, A. Atrens, F.X. Yu, J. Mater. Sci.Technol. 38(2020) 47-55. [15] X.J. Gu, W.L. Cheng, S.M. Cheng, Y.H. Liu, Z.F. Wang, H. Yu, Z.Q. Cui, L.F. Wang, H. X. Wang, J. Mater. Sci.Technol. 60(2021) 77-89. [16] T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci.Technol. 97(2022) 147-155. [17] H.B. Yang, L. Wu, B. Jiang, W.J. Liu, J.F. Song, G.S. Huang, D.F. Zhang, F.S. Pan, J. Mater. Sci.Technol. 62(2021) 128-138. [18] T.D. Gregory, R.J. Hoffman, R.C. Winterton, J. Electrochem. Soc. 137(1990) 775-780. [19] M.E. Spahr, P. Novák, O. Haas, R. Nesper, J. Power Sources 54 (1995) 346-351. [20] D. Wu, W. Ren, Y.N.NuLi, J.Yang, J.L. Wang, J. Mater. Sci. Technol. 91(2021) 168-177. [21] J.Y. Zhang, X.H. Yao, R.K. Misra, Q. Cai, Y.L. Zhao, J. Mater. Sci.Technol. 44(2020) 237-257. [22] R. Dominko, J. Bitenc, R. Berthelot, M. Gauthier, G. Pagot, V. Di Noto, J. Power Sources 478 (2020) 229027. [23] J. Bae, H. Park, X.L. Guo, X. Zhang, J.H. Warner, G.H. Yu, Energy Environ. Sci. 14(2021) 4391-4399. [24] M. Fichtner, M. Fichtner, in: Magnesium Batteries: Research and Applications, the Royal Society of Chemistry, 2020, pp. 1-16. [25] J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 116(2016) 140-162. [26] T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Nat. Mater. 18(2019) 1278-1291. [27] M. Guo, C.Y. Yuan, T.F. Zhang, X.B.Yu, Small(2022) 2106981. [28] J.C. Sun, Y.B. Zou, S.Z. Gao, L.Y. Shao, C.C. Chen, ACS Appl. Mater. Interfaces 12 (2020) 54711-54719. [29] S.K. Jeong, Y.K. Jo, N.J. Jo, Electrochim. Acta 52 (2006) 1549-1555. [30] Y.Y. Shao, N.N. Rajput, J.Z. Hu, M. Hu, T.B. Liu, Z.H. Wei, M. Gu, X.C. Deng, S. C. Xu, K.S. Han, J.L. Wang, Z.M. Nie, G.S. Li, K.R. Zavadil, J. Xiao, C.M. Wang, W.A. Henderson, J.G. Zhang, Y. Wang, K.T. Mueller, K. Persson, J. Liu, Nano En- ergy 12 (2015) 750-759. [31] R. Zettl, I. Hanzu, Front. Energy Res. 9(2021) 714698. [32] W.T. Xu, X.K. Pei, C.S. Diercks, H. Lyu, Z. Ji, O.M. Yaghi, J. Am. Chem.Soc. 141(2019) 17522-17526. [33] E.M. Miner, S.S. Park, M. Dinca, J. Am. Chem.Soc. 141(2019) 4 422-4 427. [34] L. Shen, H.B. Wu, F. Liu, J.L. Brosmer, G.R. Shen, X.F. Wang, J.I. Zink, Q.F. Xiao, M. Cai, G. Wang, Y.F. Lu, B. Dunn, Adv. Mater. 30(2018) 1707476. [35] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, Science 341 (2013) 12304 4 4. [36] J.N. Zhou, Q.Y. Yang, Q.Y. Xie, H. Ou, X.M. Lin, A. Zeb, L. Hu, Y.B. Wu, G.Z. Ma, J. Mater. Sci.Technol. 96(2022) 262-284. [37] M.L. Aubrey, R. Ameloot, B.M. Wiers, J.R. Long, Energy Environ. Sci. 7(2014) 667-671. [38] S.Y. Chui Stephen, M.F. Lo Samuel, P.H. Charmant Jonathan, A.G. Orpen, D. Williams Ian, Science 283 (1999) 1148-1150. [39] H.K. Kim, W.S. Yun, M.B. Kim, J.Y. Kim, Y.S. Bae, J. Lee, N.C. Jeong, J. Am. Chem. Soc. 137 (2015) 10 0 09-10 015. [40] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, M. Yaghi Omar, Science 295 (2002) 469-472. [41] Y. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z.-.D. Huang, T.Minato, C. Tassel, J. Kim, Y. Kobayashi, T. Abe, H. Kageyama, Y. Uchimoto, Sci. Rep. 4(2014) 5622. [42] A .A. Talin, A. Centrone, C. Ford Alexandra, E. Foster Michael, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, P. Yoon Heayoung, F. Léonard, D. Allendorf Mark, Science 343 (2014) 66-69. [43] C.F. Wen, M. Zhou, P.F. Liu, Y.W. Liu, X.F. Wu, F.X. Mao, S. Dai, B.B. Xu, X. L. Wang, Z. Jiang, P. Hu, S. Yang, H.F. Wang, H.G. Yang, Angew. Chem. Int. Ed. 61(2022) e202111700. [44] E. Borfecchia, S. Maurelli, D. Gianolio, E. Groppo, M. Chiesa, F. Bonino, C. Lam- berti, J. Phys. Chem. C 116 (2012) 19839-19850. [45] M.P. Singh, N.R. Dhumal, H.J. Kim, J. Kiefer, J.A. Anderson, J. Phys. Chem. C 120 (2016) 17323-17333. [46] Z. Yu, T.R. Juran, X.Y. Liu, K.S. Han, H. Wang, K.T. Mueller, L. Ma, K. Xu, T. Li, L. A. Curtiss, L. Cheng, Energy Environ. Mater. 5(2021) 295-304. [47] K. Hashimoto, S. Suzuki, M.L. Thomas, T. Mandai, S. Tsuzuki, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 20(2018) 7998-8007. [48] T. Kimura, K. Fujii, Y. Sato, M. Morita, N. Yoshimoto, J. Phys. Chem. C 119 (2015) 18911-18917. [49] J.C. Lassegues, J. Grondin, C. Aupetit, P. Johansson, J. Phys. Chem. A 113 (2009) 305-314. [50] D.M. Seo, P.D. Boyle, R.D. Sommer, J.S. Daubert, O. Borodin, W.A. Henderson, J. Phys. Chem. B 118 (2014) 13601-13608. [51] Y. Wang, T.T. Luo, Y. Li, A.L. Wang, D.W. Wang, J.L. Bao, U. Mohanty, C.K. Tsung, ACS Appl. Mater. Interfaces 13 (2021) 51974-51987. [52] B.M. Wiers, M.L. Foo, N.P. Balsara, J.R. Long, J. Am. Chem.Soc. 133(2011) 14522-14525. [53] D.M. Chen, J.Y. Tian, C.S. Liu, M. Du, Chem. Commun. 52(2016) 8413-8416. [54] U. Kokcam-Demir, A. Goldman, L. Esrafili, M. Gharib, A. Morsali, O. Weingart, C. Janiak, Chem. Soc. Rev. 49(2020) 2751-2798. [55] H. Furukawa, Y.B. Go, N. Ko, Y.K. Park, F.J.Uribe-Romo, J.Kim, M. O'Keeffe, O. M. Yaghi, Inorg. Chem. 50(2011) 9147-9152. [56] L.F. Ding, A.O. Yazaydin, Microporous Mesoporous Mater. 182(2013) 185-190. [57] J. Bae, C.Y. Lee, N.C. Jeong, Bull. Korean Chem. Soc. 42(2021) 658-666. [58] W.Y. Gao, R. Cai, T. Pham, K.A. Forrest, A. Hogan, P. Nugent, K. Williams, L. Woj- tas, R.Luebke, Ł.J. Weseliński, M.J. Zaworotko, B. Space, Y.S. Chen, M. Eddaoudi, X. D. Shi, S.Q. Ma, Chem. Mater. 27(2015) 2144-2151. [59] A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, J. Am. Chem.Soc. 131(2009) 458-460. [60] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O'Keeffe, J. Kim, O.M. Yaghi, Science 329 (2010) 424-428. [61] H. Furukawa, M.A. Miller, O.M. Yaghi, J. Mater. Chem. 17(2007) 3197-3204. [62] D. Saha, Z.J. Wei, S.G. Deng, Int. J. Hydrog. Energy 33 (2008) 7479-7488. [63] Q. Liu, J.M. Yang, L.N. Jin, W.Y. Sun, Chem. Eur. J. 20(2014) 14783-14789. [64] R. Sanz, F. Martinez, G. Orcajo, L. Wojtas, D. Briones, Dalton Trans. 42(2013) 2392-2398. [65] P. Canepa, S.H. Bo, G. Sai Gautam, B. Key, W.D. Richards, T. Shi, Y.S. Tian, Y. Wang, J.C. Li, G. Ceder, Nat. Commun. 8(2017) 1759. [66] H.X. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J.F. Stoddart, O.M. Yaghi, Science 336 (2012) 1018-1023. [67] R. Dutta, A. Kumar, Solid State Sci. 100(2020) 106115. [68] P.P. He, X. Liu, X.J. Yang, Z.G. Yan, Y.C. Chen, Z.F. Tian, Q.F. Tian, Catal. Lett.(2022), doi: 10.1007/s10562- 022- 04020- 4. [69] S. Higashi, K. Miwa, M. Aoki, K. Takechi, Chem. Commun. 50(2014) 1320-1322. [70] K. Kisu, S. Kim, M. Inukai, H. Oguchi, S. Takagi, S.I. Orimo, ACS Appl. Energ. Mater. 3(2020) 3174-3179. [71] S. Kundu, N. Solomatin, Y. Kauffmann, A. Kraytsberg, Y. Ein-Eli, Appl. Mater. Today 23 (2021) 100998. [72] R. Le Ruyet, B. Fleutot, R. Berthelot, Y. Benabed, G. Hautier, Y. Filinchuk, R. Janot, A.C.S.Appl, Energ. Mater. 3(2020) 6093-6097. [73] B. Liang, V. Keshishian, S. Liu, E. Yi, D. Jia, Y. Zhou, J. Kieffer, B. Ye, R.M. Laine, Electrochim. Acta 272 (2018) 144-153. [74] R.P. Ojha, P.A. Lemieux, P.K. Dixon, A.J. Liu, D.J. Durian, Nature 427 (2004) 521-523. [75] T. Ota, S. Uchiyama, K. Tsukada, M. Moriya, Front. Energy Res. 9(2021) 640777. [76] E. Roedern, R.S. Kuhnel, A. Remhof, C. Battaglia, Sci. Rep. 7(2017) 46189. [77] M. Todaro, L. Sciortino, F.M. Gelardi, G. Buscarino, J. Phys. Chem. C 121 (2017) 24853-24860. [78] Y. Tomita, R. Saito, A. Nagata, Y. Yamane, Y. Kohno, Energies 13 (2020) 6687. [79] Y. Yan, J.B. Grinderslev, T. Burankova, S. Wei, J.P. Embs, J. Skibsted, T.R. Jensen, J. Phys. Chem.Lett. 13(2022) 2211-2216. [80] Y.F. Zhang, H.B. Geng, W.F. Wei, J.M. Ma, L.B. Chen, C.C. Li, Energy Storage Mater. 20(2019) 118-138. [81] K.M. Anilkumar, B. Jinisha, M. Manoj, S. Jayalekshmi, Eur. Polym. J. 89(2017) 249-262. [82] S.N. Asmara, M.Z. Kufian, S.R. Majid, A.K. Arof, Electrochim. Acta 57 (2011) 91-97. [83] R. Manjuladevi, M. Thamilselvan, S. Selvasekarapandian, R. Mangalam, M. Pre- malatha, S.Monisha, Solid State Ion. 308(2017) 90-100. [84] Z. Osman, N.H. Zainol, S.M. Samin, W.G. Chong, K.B. Md Isa, L. Othman, I. Supa'at, F. Sonsudin, Electrochim. Acta 131 (2014) 148-153. [85] G.P. Pandey, S.A. Hashmi, J. Power Sources 187 (2009) 627-634. [86] M. Saito, H. Ikuta, Y. Uchimoto, M. Wakihara, S. Yokoyama, T. Yabe, M. Ya- mamoto, J.Electrochem. Soc. 150(2003) A477-A483. [87] M. Rashad, H.Z. Zhang, M. Asif, K. Feng, X.F. Li, H.M. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 4757-4766. |
[1] | Lu Zhang, Jianhao Qiu, Guanglu Xia, Dingliang Dai, Xiang Zhong, Jianfeng Yao. Constructing a Z-scheme Fe-MOF-based heterostructure for visible-light-driven oxidation of aromatic alcohol in ambient air [J]. J. Mater. Sci. Technol., 2023, 138(0): 214-220. |
[2] | Bao Zhang, Baohe Xu, Haozhe Qin, Liang Cao, Xing Ou. Highly active and stable Cu9S5-MoS2 heterostructures nanocages enabled by dual-functional Cu electrocatalyst with enhanced potassium storage [J]. J. Mater. Sci. Technol., 2023, 143(0): 107-116. |
[3] | Siyao Guo, Yunfeng Bao, Ying Li, Hailong Guan, Dongyi Lei, Tiejun Zhao, Baomin Zhong, Zhihong Li. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks [J]. J. Mater. Sci. Technol., 2022, 118(0): 218-228. |
[4] | Runrun Cheng, Yan Wang, Xiaochuang Di, Zhao Lu, Ping Wang, Xinming Wu. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions [J]. J. Mater. Sci. Technol., 2022, 129(0): 15-26. |
[5] | Jianen Zhou, Qingyun Yang, Qiongyi Xie, Hong Ou, Xiaoming Lin, Akif Zeb, Lei Hu, Yongbo Wu, Guozheng Ma. Recent progress in Co-based metal-organic framework derivatives for advanced batteries [J]. J. Mater. Sci. Technol., 2022, 96(0): 262-284. |
[6] | Rui Liu, Xiang He, Miao Miao, Shaomei Cao, Xin Feng. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility [J]. J. Mater. Sci. Technol., 2022, 112(0): 202-211. |
[7] | Biao Wang, Dongyue Sun, Yilun Ren, Xiaoya Zhou, Yujie Ma, Shaochun Tang, Xiangkang Meng. MOFs derived ZnSe/N-doped carbon nanosheets as multifunctional interlayers for ultralong-Life lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 125(0): 97-104. |
[8] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[9] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[10] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[11] | Haifeng Xu, Guang Zhu, Baoming Hao. Metal-organic frameworks derived flower-like Co3O4/nitrogen doped graphite carbon hybrid for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(1): 100-108. |
[12] | Chenchen Zhang, Siyue Wei, Lixian Sun, Fen Xu, Pengru Huang, Hongliang Peng. Synthesis, structure and photocatalysis properties of two 3D Isostructural Ln (III)-MOFs based 2,6-Pyridinedicarboxylic acid [J]. J. Mater. Sci. Technol., 2018, 34(9): 1526-1531. |
[13] | Huatang YUAN, Lifang JIAO, Jiansheng CAO, Xiusheng LIU, Ming ZHAO, Yongmei WANG. Development of Magnesium-Insertion Positive Electrode for Rechargeable Magnesium Batteries [J]. J Mater Sci Technol, 2004, 20(01): 41-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||