J. Mater. Sci. Technol. ›› 2023, Vol. 135: 26-33.DOI: 10.1016/j.jmst.2022.07.005
• Research Article • Previous Articles Next Articles
Xi Dua,b,*, Leilei Yina,c, WenJun Zhanga,b, Maliang Zhanga,b, Kunmei Sua,c,*, Zhenhuan Lia,b
Received:
2021-11-06
Revised:
2022-01-29
Accepted:
2022-07-10
Published:
2023-02-01
Online:
2022-08-02
Contact:
*State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China. E-mail addresses: duxi@tiangong.edu.cn (X. Du), sukunmei@tiangong.edu.cn (K. Su)
Xi Du, Leilei Yin, WenJun Zhang, Maliang Zhang, Kunmei Su, Zhenhuan Li. Synergistic coupling of Ni3ZnC0.7 decorated with homogeneous multimetal CoNiCuFe nitrogen-codoped carbon matrix as high-entropy catalysts for efficient overall water splitting[J]. J. Mater. Sci. Technol., 2023, 135: 26-33.
[1] R. Boppella, J.W. Tan, J.W. Yun, S.V. Manorama, J. Moon. Coord.Chem. Rev. 427 (2021) 213552. [2] Y. Pang, W.C. Xu, S.L. Zhu, Z.D. Cui, Y.Q. Liang, Z.Y. Li, S.L. Wu, C.T. Chang, S.Y. Luo, J. Mater. Sci.Technol. 82 (2021) 96-104. [3] B.H.R Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Nat.Commun. 10 (2019) 5599. [4] Y. Wei, R.A. Soomro, X.Q. Xie, B. Xu, J. Energy Chem. 55 (2021) 244-255. [5] M. Wang, K.L. Jian, Z.P. Lv, D. Li, G.Q. Fan, R. Zhang, J. Dang, J. Mater. Sci.Tech- nol. 79 (2021) 29-34. [6] H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng, J. Chen. Adv.Mater. 32 (2020) 1806326. [7] X.Y. Hu, R.J. Wang, P. Sun, Z.Y. Xiang, X.F. Wang, ACS Sustain. Chem. Eng. 7 (2019) 19426-19433. [8] L.L. Qiao, A.Q. Zhu, W.X. Zeng, R. Dong, P.F. Tan, Z.P. Ding, P. Gao, S.Y. Wang, J. Pan, J. Mater. Chem. A 8 (2020) 2453-2462. [9] J.G. Hou, Y.Q. Sun, Z.W. Li, B. Zhang, S.Y. Cao, Y.Z. Wu, Z.M. Gao, L.C. Sun, Adv. Funct. Mater. 28 (2018) 1803278. [10] R.J. Liu, M. Anjass, S. Greiner, S. Liu, D.D. Gao, J. Biskupek, U. Kaiser, G.J. Zhang, C. Streb, Chem. Eur. J. 26 (2019) 4157-4164. [11] P. Lu, X.Y. Chen, Electrochim. Acta 386 (2021) 138517. [12] A. Amiri, R. Shahbazian-Yassar, J. Mater. Chem. A 9 (2021) 782-823. [13] Z. Jia, T. Yang, L.G. Sun, Y.L. Zhao, W.P. Li, J.H. Luan, F.C. Lyu, L.C. Zhang, J.J. Kruzic, J.J. Kai, J.C. Huang, J. Lu, C.T. Liu, Adv. Mater. 32 (2020) 20 0 0385. [14] H.Y. Wang, R. Wei, X.M. Li, X.L. Ma, X.G. Hao, G.Q. Guan, J. Mater. Sci.Technol. 68 (2021) 191-198. [15] L.J. Zhang, W.W. Cai, N.Z. Bao, Adv. Mater. 33 (2021) 2100745. [16] Z.Y. Jin, J. Lv, H.L. Jia, W.H. Liu, H.L. Li, Z.H. Chen, X. Lin, G.Q. Xie, X.J. Liu, S.H. Sun, H.J. Qiu, Small 15 (2019) 1904180. [17] W.J. Dai, T. Lu, Y. Pan, J. Power Sources 430 (2019) 104-111. [18] H.-.J. Qiu, G.Fang, J.J. Gao, Y.R. Wen, J. Lv, H.L. Li, G.Q. Xie, X.J. Liu, S.H. Sun, ACS Mater. Lett. 1 (2019) 526-533. [19] N.L.N.Broge, M. Bondesgaard, F.Sondergaard-Pedersen, M. Roelsgaard, B.B. Iversen, Angew. Chem. Int. Edit. 59 (2020) 21920-21924. [20] Y. Zhang, T. Lu, Y.K. Ye, W.J. Dai, Y.A. Zhu, Y. Pan, ACS Appl. Mater. Interfaces 12 (2020) 32548-32555. [21] B. Zhang, X.L. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. L. Han, J.X. Xu, M. Liu, L.R. Zheng, F.P.G. de Arquer, C.T. Dinh, F.J. Fan, M.J. Yuan, E. Yassitepe, N. Chen, T. Regier, P.F. Liu, Y.H. Li, P. De Luna, A. Jan- mohamed, H.L.L. Xin, H.G. Yang, A. Vojvodic, E.H. Sargent, Science 352 (2016) 333-337. [22] Q.S. Wang, A. Sarkar, Z.Y. Li, Y. Lu, L. Velasco, S.S. Bhattacharya, T. Brezesinski, H. Hahn, B. Breitung, Electrochem. Commun. 100 (2019) 121-125. [23] X.H. Zhao, Z.M. Xue, W.J. Chen, X.Y. Bai, R.F. Shi, T.C. Mu, J. Mater. Chem. A 7 (2019) 26238-26242. [24] J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo, J. Mater. Sci.Technol. 79 (2021) 171-177. [25] X.D. Wen, X.Y. Yang, M. Li, L. Bai, J.Q. Guan, Electrochim. Acta 296 (2019) 830-841. [26] J.H. Shi, F. Qiu, W.B. Yuan, M.M. Guo, Z.H. Lu, Chem. Eng. J. 403 (2021) 126312. [27] Y.W. Li, T. Zhao, M.T. Lu, Y.H. Wu, Y.B. Xie, H. Xu, J.K. Gao, J.M. Yao, G.D. Qian, Q. C. Zhang, Small 15 (2019) 1901940. [28] W. Li, J. Liu, P.F. Guo, H.Z. Li, B. Fei, Y.H. Guo, H.G. Pan, D.L. Sun, F. Fang, R.B. Wu, Adv. Energy Mater. 11 (2021) 2102134. [29] B.W. Liu, F. Liu, D.S. Lu, S.S. Zhang, C. Zhang, Z. Gao, L. Shi, Y.Y. Liu, J.X. Shi, L. P. Zhang, S.L. Zhao, D. Liu, Chem. Eng. J. 430 (2022) 132762. [30] X.Y. Wang, Y. Fei, J. Chen, Y.X. Pan, W.Y. Yuan, L.Y. Zhang, C.X. Guo, C.M. Li, Small 18 (2022) 2103866. [31] Y. Wang, W.T. Wu, Y. Rao, Z.T. Li, N. Tsubaki, M.B. Wu, J. Mater. Chem. A 5 (2017) 6170-6177. [32] Y.C. Zhao, X. Li, J.D. Liu, C.G. Wang, Y.Y. Zhao, G.H. Yue, ACS Appl. Mater. Inter- faces 8 (2016) 6472-6480. [33] T. Yang, K.L. Liu, T.L. Wu, J.Z. Zhang, X.W. Zheng, C.Y. Wang, M.M. Chen, J. Mater. Chem. A 8 (2020) 18032-18042. [34] W.H. Wang, H.W. Yan, U. Anand, U. Mirsaidov, J. Am. Chem.Soc. 143 (2021) 1854-1862. [35] W.X. Wang, Y. Lu, M.L. Zhao, R.J. Luo, Y. Yang, T. Peng, H.L. Yan, X.M. Liu, Y.S. Luo, ACS Nano 13 (2019) 12206-12218. [36] C. Guan, X.M. Liu, W.N. Ren, X. Li, C.W. Cheng, J. Wang, Adv. Energy Mater. 7 (2017) 1602391. [37] M. Kuang, Q.H. Wang, P. Han, G.F. Zheng, Adv. Energy Mater. 7 (2017) 1700193. [38] Z.H. Wang, H.H. Jin, T. Meng, K. Liao, W.Q. Meng, J.L. Yang, D.P. He, Y.L. Xiong, S. C. Mu, Adv. Funct. Mater. 28 (2018) 1802596. [39] X.G. Feng, X. Bo, L.P. Guo, J. Power Sources 389 (2018) 249-259. [40] R. Li, X.D. Li, D.S. Yu, L.L. Li, G.C. Yang, K.L. Zhang, S. Ramakrishna, L.F. Xie, S.J. Peng, Carbon N Y 148 (2019) 496-503. [41] Z.L. Chen, Y. Ha, H.X. Jia, X.X. Yan, M. Chen, M. Liu, R.B. Wu, Adv. Energy Mater. 9 (2019) 1803918. [42] D. Liu, J.C. Li, S.H. Ding, Z.Y. Lyu, S. Feng, H.Y. Tian, C.X. Huyan, M.J. Xu, T. Li, D. Du, P. Liu, M.H. Shao, Y.H. Lin, Small Methods 4 (2020) 1900827. [43] J.H. Kang, J.L. Sheng, J.Q. Xie, H.Q. Ye, J.H. Chen, X.Z. Fu, G.P. Du, R. Sun, C. P. Wong, J. Mater. Chem. A 6 (2018) 10064-10073. [44] X.Q. Du, H. Su, X.S. Zhang, J. Catal. 383 (2020) 103-116. [45] N.Y. Cheng, N.N. Wang, L. Ren, G. Casillas-Garcia, N.N. Liu, Y.N. Liu, X. Xu, W. C. Hao, S.X. Dou, Y. Du, Carbon N Y 163 (2020) 178-185. [46] J. Bai, J. Mei, T. Liao, Q. Sun, Z.G. Chen, Z.Q. Sun, Adv. Energy Mater. 12 (2021) 2103247. [47] J.S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 8 (2018) 1702774. [48] L. Yu, H.Q. Zhou, J.Y. Sun, F. Qin, F. Yu, J.M. Bao, Y. Yu, S. Chen, Z.F. Ren, Energy Environ. Sci. 10 (2017) 1820-1827. [49] M.I. Abdullah, A. Hameed, T.P. Hu, N. Zhang, M.M. Ma, ACS Appl. Energ. Mater. 2 (2019) 8919-8929. [50] X.J. Liu, W. Xi, C. Li, X.B. Li, J. Shi, Y.L. Shen, J. He, L.H. Zhang, L. Xie, X.M. Sun, P. Wang, J. Luo, L.M. Liu, Y. Ding, Nano Energy 44 (2018) 371-377. [51] X. Wang, L.L. Chai, J.Y. Ding, L. Zhong, Y.J. Du, T.T. Li, Y. Hu, J.J. Qian, S.M. Huang, Nano Energy 62 (2019) 745-753. [52] R. Yang, Y.M. Zhou, Y.Y. Xing, D. Li, D.L. Jiang, M. Chen, W.D. Shi, S.Q. Yuan, Appl. Catal. B-Environ. 253 (2019) 131-139. [53] K. Feng, H.C. Zheng, D. Zhang, G.T. Yuan, L.Y. Chang, Y.F. Chen, J. Zhong, J. En- ergy Chem. 58 (2021) 364-369. [54] Y. Liu, X. Li, Q.H. Zhang, W.D. Li, Y. Xie, H.Y. Liu, L. Shang, Z.Y. Liu, Z.M. Chen, L. Gu, Z.Y. Tang, T.R. Zhang, S.Y. Lu, Angew. Chem. Int. Edit. 59 (2019) 1718-1726. [55] Q.R. Liang, H.H. Jin, Z. Wang, Y.L. Xiong, S. Yuan, X.C. Zeng, D.P. He, S.C. Mu, Nano Energy 57 (2019) 746-752. |
[1] | Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong. ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 114(0): 206-214. |
[2] | Lei Chen, Yunpeng Wang, Xin Zhao, Yuchao Wang, Qian Li, Qichen Wang, Yougen Tang, Yongpeng Lei. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting [J]. J. Mater. Sci. Technol., 2022, 110(0): 128-135. |
[3] | Mengxiao Sun, Derong Wang, Ziming Xiong, Zhongwei Zhang, Long Qin, Chaochan Chen, Fan Wu, Panbo Liu. Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption [J]. J. Mater. Sci. Technol., 2022, 130(0): 176-183. |
[4] | Yuanting Xu, Wanting Lin, Dandan Yuan, Shifan Chen, Fang Li, Yanping Long, Chao He, Weifeng Zhao, Changsheng Zhao. “1+1>2”: Highly efficient removal of organic pollutants by composite nanofibrous membrane based on the synergistic effect of adsorption and photocatalysis [J]. J. Mater. Sci. Technol., 2022, 124(0): 76-85. |
[5] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[6] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[7] | Zhiyi Qian, Nuoya Zhao, Chunyao Wang, Weizhong Yuan. Injectable self-healing polysaccharide hydrogel loading CuS and pH-responsive DOX@ZIF-8 nanoparticles for synergistic photothermal-photodynamic-chemo therapy of cancer [J]. J. Mater. Sci. Technol., 2022, 127(0): 245-255. |
[8] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[9] | Yan-Cai Gao, Chong Wang, Chun-Xia Zhang, Hong-Wei Li, Yuqing Wu. Controlled preparation and application of glutathione capped gold and platinum alloy nanoclusters with high peroxidase-like activity [J]. J. Mater. Sci. Technol., 2022, 109(0): 140-146. |
[10] | Han Li, Hui Li, Ziqiang Wu, Lili Zhu, Changdian Li, Shuai Lin, Xuebin Zhu, Yuping Sun. Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors [J]. J. Mater. Sci. Technol., 2022, 123(0): 34-40. |
[11] | Jian Chen, Zhen Hu, Yang Ou, Qinghua Zhang, Xiaopeng Qi, Lin Gu, Tongxiang Liang. Interfacial engineering regulated by CeOx to boost efficiently alkaline overall water splitting and acidic hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2022, 120(0): 129-138. |
[12] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[13] | Yong Liu, Xinqing Han, Qing Huang, Miguel L. Crespillo, Peng Liu, Eva Zarkadoula, Xuelin Wang. Structural damage response of lanthanum and yttrium aluminate crystals to nuclear collisions and electronic excitation: Threshold assessment of irradiation damage [J]. J. Mater. Sci. Technol., 2021, 90(0): 95-107. |
[14] | Wei Chen, Lei You, Guanglin Xia, Xuebin Yu. A balance between catalysis and nanoconfinement towards enhanced hydrogen storage performance of NaAlH4 [J]. J. Mater. Sci. Technol., 2021, 79(0): 205-211. |
[15] | Bhavana Joshi, Edmund Samuel, Yong-il Kim, Govindasami Periyasami, Mostafizur Rahaman, Sam S. Yoon. Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 67(0): 116-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||