J. Mater. Sci. Technol. ›› 2022, Vol. 124: 164-170.DOI: 10.1016/j.jmst.2022.01.030
• Research Article • Previous Articles Next Articles
Bo Sua, Haowei Huangb, Zhengxin Dinga,*(), Maarten B.J. Roeffaersb, Sibo Wanga,*(
), Jinlin Longa,*(
)
Received:
2021-10-25
Revised:
2022-01-05
Accepted:
2022-01-11
Published:
2022-10-10
Online:
2022-04-04
Contact:
Zhengxin Ding,Sibo Wang,Jinlin Long
About author:
jllong@fzu.edu.cn (J. Long)Bo Su, Haowei Huang, Zhengxin Ding, Maarten B.J. Roeffaers, Sibo Wang, Jinlin Long. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction[J]. J. Mater. Sci. Technol., 2022, 124: 164-170.
Fig. 1. (a) Schematic illustration of the synthetic process of all CoTiO3/Cd9.51Zn0.49S10 (CoTiO3/CdZnS) heterostructures. (b, c) FESEM images, (d) TEM image, and (e) HRTEM image of CoTiO3 microprisms. (f, g) FESEM images, (h, i) TEM images, and (j) HRTEM image of heterostructures.
Fig. 2. UPS spectra of (a) CoTiO3 and (b) CdZnS. (c) DRS spectra of CoTiO3, CdZnS and 20%-CoTiO3/CdZnS and (d) Tauc plots of CoTiO3 and CdZnS. (e) Schematic illustration of the band structures for CoTiO3 and CdZnS before and after contact. (f) ESR signal intensity of DMPO-·O2- adducts of CdZnS, CoTiO3, and 20%-CoTiO3/CdZnS. Schematic illustration of the charge transfer pathway followed the S-scheme mechanism in the hybrids (inset).
Fig. 3. (a) Photocatalytic CO2 reduction activity of the different samples. (b) CO2 photoreduction performance of the system under varied conditions. (c) Wavelength-dependence of the CO2 reduction reaction. (d) Stability tests of 20%-CoTiO3/CdZnS.
Fig. 4. (a) The steady-state PL spectra, (b) TRPL decay curve fitted with multiexponential parameters and probed at 550 nm with 376 nm excitation, (c) Transient photocurrent spectra recorded by alternating dark and illumination, and (d) EIS spectra of 20%-CoTiO3/CdZnS and CdZnS.
[1] | Y. Xia, M. Sayed, L. Zhang, B. Cheng, J. Yu, Chem. Catal. 1 (2021) 1173-1214. |
[2] |
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936.
DOI URL |
[3] |
W. Kim, B.A. Mcclure, E. Edri, H. Frei, Chem. Soc. Rev. 45 (2016) 3221-3243.
DOI URL |
[4] |
P. Zhang, S. Wang, B.Y. Guan, X.W. Lou, Energy Environ. Sci. 12 (2019) 164-168.
DOI URL |
[5] |
M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong, R. Xu, Angew. Chem. Int. Ed. 57 (2018) 13570-13574.
DOI URL |
[6] |
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52 (2013) 7372-7408.
DOI PMID |
[7] |
M.F. Kuehnel, K.L. Orchard, K.E. Dalle, E. Reisner, J. Am. Chem. Soc. 139 (2017) 7217-7223.
DOI PMID |
[8] |
S. Wang, B.Y. Guan, Y. Lu, X.W.D. Lou, J. Am. Chem. Soc. 139 (2017) 17305-17308.
DOI URL |
[9] |
S. Wang, B.Y. Guan, X.W.D. Lou, J. Am. Chem. Soc. 140 (2018) 5037-5040.
DOI URL |
[10] |
J. Di, C. Chen, S.Z. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y.X. Weng, J. Xia, L. Song, S. Li, H. Li, Z. Liu, Nat. Commun. 10 (2019) 2840.
DOI URL |
[11] |
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B 272 (2020) 119006.
DOI URL |
[12] |
A. Chen, M.Q. Yang, S. Wang, Q. Qian, Front. Nanotechnol. 3 (2021) 723120.
DOI URL |
[13] |
J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater. 31 (2019) 1802981.
DOI URL |
[14] |
C. Yang, B. Wang, L. Zhang, L. Yin, X. Wang, Angew. Chem. Int. Ed. 56 (2017) 6627-6631.
DOI PMID |
[15] |
S. Gao, B. Gu, X. Jiao, Y. Sun, X. Zu, F. Yang, W. Zhu, C. Wang, Z. Feng, B. Ye, Y. Xie, J. Am. Chem. Soc. 139 (2017) 3438-3445.
DOI URL |
[16] |
Y. Wei, J. Jiao, Z. Zhao, J. Liu, J. Li, G. Jiang, Y. Wang, A. Duan, Appl. Catal. B 179 (2015) 422-432.
DOI URL |
[17] |
M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Appl. Catal. B 217 (2017) 485-493.
DOI URL |
[18] |
D. Liu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Angew. Chem. Int. Ed. 59 (2020) 4519-4524.
DOI URL |
[19] |
M. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Angew. Chem. Int. Ed. 57 (2018) 2160-2164.
DOI URL |
[20] |
B. Han, X. Ou, Z. Deng, Y. Song, C. Tian, H. Deng, Y.J. Xu, Z. Lin, Angew. Chem. Int. Ed. 57 (2018) 16811-16815.
DOI URL |
[21] |
S. Wang, B.Y. Guan, X.W. Lou, Energy Environ. Sci. 11 (2018) 306-310.
DOI URL |
[22] |
G. Yu, J. Qian, P. Zhang, B. Zhang, W. Zhang, W. Yan, G. Liu, Nat. Commun. 10 (2019) 4912.
DOI URL |
[23] |
M. Liu, Y. Chen, J. Su, J. Shi, X. Wang, L. Guo, Nat. Energy 1 (2016) 16151.
DOI URL |
[24] |
Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. Gong, ACS Catal. 3 (2013) 882-889.
DOI URL |
[25] |
Q. Li, H. Meng, J. Yu, W. Xiao, Y. Zheng, J. Wang, Chem. Eur. J. 20 (2014) 1176-1185.
DOI URL |
[26] |
M. Cai, R. Li, Z. Xie, J. Huang, Y. Zeng, Q. Zhang, H. Liu, W. Lv, G. Liu, Appl. Catal. B 259 (2019) 118033.
DOI URL |
[27] |
X. Zhang, Z. Zhao, W. Zhang, G. Zhang, D. Qu, X. Miao, S. Sun, Z. Sun, Small 12 (2016) 793-801.
DOI URL |
[28] |
B. Su, L. Huang, Z. Xiong, Y. Yang, Y. Hou, Z. Ding, S. Wang, J. Mater. Chem. A 7 (2019) 26877-26883.
DOI URL |
[29] |
Z. Li, W. Huang, J. Liu, K. Lv, Q. Li, ACS Catal. 11 (2021) 8510-8520.
DOI URL |
[30] |
M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, J. Am. Chem. Soc. 139 (2017) 13234-13242.
DOI URL |
[31] |
Z. Wang, W. Wu, Q. Xu, G. Li, S. Liu, X. Jia, Y. Qin, Z.L. Wang, Nano Energy 38 (2017) 518-525.
DOI URL |
[32] |
S. Wang, B.Y. Guan, X. Wang, X.W.D. Lou, J. Am. Chem. Soc. 140 (2018) 15145-15148.
DOI URL |
[33] |
Z. Qin, F. Xue, Y. Chen, S. Shen, L. Guo, Appl. Catal. B 217 (2017) 551-559.
DOI URL |
[34] |
B.J. Ng, L.K. Putri, X.Y. Kong, K.P.Y. Shak, P. Pasbakhsh, S.P. Chai, A.R. Mohamed, Appl. Catal. B 224 (2018) 360-367.
DOI URL |
[35] |
D. Qin, Y. Xia, Q. Li, C. Yang, Y. Qin, K. Lv, J. Mater. Sci. Technol. 56 (2020) 206-215.
DOI URL |
[36] |
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613.
DOI URL |
[37] |
L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447.
DOI URL |
[38] |
P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5218-5225.
DOI URL |
[39] |
Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 143-150.
DOI URL |
[40] |
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317.
DOI URL |
[41] |
A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, Appl. Catal. B 289 (2021) 120039.
DOI URL |
[42] |
M. Tahir, B. Tahir, J. Mater. Sci. Technol. 106 (2022) 195-210.
DOI URL |
[43] |
S. Wageh, A.A. Al-Ghamdi, R. Jafer, X. Li, P. Zhang, Chin. J. Catal. 42 (2021) 667-669.
DOI URL |
[44] |
A. Kumar, P.R. Thakur, G. Sharma, D.V.N. Vo, M. Naushad, T. Tatarchuk, A. Gar-cía-Peñas, B. Du, F.J. Stadler, Chemosphere 287 (2022) 132301.
DOI URL |
[45] |
J. Peng, J. Shen, X. Yu, H. Tang, Q. Zulfiqar, C. Liu, J. Catal. 42 (2021) 87-96.
DOI URL |
[46] |
R.M. Mohamed, I.A. Mkhalid, M. Alhaddad, A. Basaleh, K.A. Alzahrani, A.A. Is-mail, Ceram. Int. 47 (2021) 26779-26788.
DOI URL |
[47] | S. Wageh, A. Al-Ghamdi, L. Liu, Acta Phys. Chim. Sin. 37 (2021) 2010024. |
[48] | H.T. Xingang Fei, B. Cheng, B. Zhu, L. Zhang, Acta Phys. Chim. Sin. 37 (2021) 2010027. |
[49] |
Y.J. Lin, Y.H. Chang, W.D. Yang, B.S. Tsai, J. Non Cryst. Solids 352 (2006) 789-794.
DOI URL |
[50] |
Q. Wang, Q. Guo, L. Wang, B. Li, Dalton Trans. 45 (2016) 17748-17758.
DOI URL |
[51] |
R. Ye, H. Fang, Y.Z. Zheng, N. Li, Y. Wang, X. Tao, ACS Appl. Mater. Interfaces 8 (2016) 13879-13889.
DOI URL |
[52] |
Y. Qu, W. Zhou, H. Fu, ChemCatChem 6 (2014) 265-270.
DOI URL |
[53] |
M. Jiang, Y. Gao, Z. Wang, Z. Ding, Appl. Catal. B 198 (2016) 180-188.
DOI URL |
[54] |
Q. Li, W. Zhao, Z. Zhai, K. Ren, T. Wang, H. Guan, H. Shi, J. Mater. Sci. Technol. 56 (2020) 216-226.
DOI URL |
[55] |
X. Deng, D. Wang, H. Li, W. Jiang, T. Zhou, Y. Wen, B. Yu, G. Che, L. Wang, J. Alloy. Compd. 894 (2022) 162209.
DOI URL |
[56] |
Y. Jiang, Z. Sun, Q. Chen, C. Cao, Y. Zhao, W. Yang, L. Zeng, L. Huang, Appl. Surf. Sci. 571 (2022) 151287.
DOI URL |
[57] |
Y. Wang, K. Wang, J. Wang, X. Wu, G. Zhang, J. Mater. Sci. Technol. 56 (2020) 236-243.
DOI URL |
[58] |
Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, Adv. Mater. 30 (2018) 1706108.
DOI URL |
[59] |
P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, ACS Sustain. Chem. Eng. 6 (2018) 965-973.
DOI URL |
[60] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B 243 (2019) 556-565.
DOI URL |
[61] |
R. Wang, P. Yang, S. Wang, X. Wang, J. Catal. 402 (2021) 166-176.
DOI URL |
[1] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[2] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
[3] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[4] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
[5] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[6] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
[7] | Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr [J]. J. Mater. Sci. Technol., 2022, 109(0): 276-281. |
[8] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[9] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
[10] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
[11] | Biru Liao, Xiaomin Liao, Huiyuan Xie, Yuanchu Qin, Yi Zhu, Yang Yu, Sen Hou, Yuanming Zhang, Xiaoyun Fan. Built in electric field boosted photocatalytic performance in a ferroelectric layered material SrBi2Ta2O9 with oriented facets: Charge separation and mechanism insights [J]. J. Mater. Sci. Technol., 2022, 123(0): 222-233. |
[12] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[13] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[14] | Kezhen Qi, Chunqiang Zhuang, Manjie Zhang, Peyman Gholami, Alireza Khataee. Sonochemical synthesis of photocatalysts and their applications [J]. J. Mater. Sci. Technol., 2022, 123(0): 243-256. |
[15] | Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 123(0): 41-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||