J. Mater. Sci. Technol. ›› 2021, Vol. 95: 167-171.DOI: 10.1016/j.jmst.2021.02.068
• Research Article • Previous Articles Next Articles
Zheng Zhanga, Yuyang Kangb,c,*(
), Li-Chang Yinb,c, Ping Niud, Chao Zhenb,c, Runze Chenb,e, Xiangdong Kangb,c, Fayu Wua,*(
), Gang Liub,c,*(
)
Received:2021-01-16
Revised:2021-02-27
Accepted:2021-02-28
Published:2021-12-30
Online:2021-05-17
Contact:
Yuyang Kang,Fayu Wu,Gang Liu
About author:gangliu@imr.ac.cn (G. Liu).Zheng Zhang, Yuyang Kang, Li-Chang Yin, Ping Niu, Chao Zhen, Runze Chen, Xiangdong Kang, Fayu Wu, Gang Liu. Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production[J]. J. Mater. Sci. Technol., 2021, 95: 167-171.
Fig. 1. (a) CdSe QDs located on the surface of bulk g-C3N4. The photo-carriers in the framework of the melem units in the layer cannot effectively transfer to the CdSe QDs; (b) CdSe QDs located on the surface and pore edges of PCN homogeneously. The photo-carriers in the melem units can transfer to the CdSe QDs easily.
Fig. 2. (a) XRD patterns of PCN, CdSe, and CdSe/PCN heterostructures with different amounts of CdSe QDs; (b) and (c) TEM images of PCN and CdSe (60 wt%)/PCN; (d) High-resolution TEM image of the CdSe QDs located in PCN.
Fig. 3. (a) UV-visible absorption spectra of different samples PCN, CdSe and CdSe/PCN heterostructures. (b) Steady state PL emission spectra of different samples PCN, CdSe and CdSe/PCN heterostructures. The PL spectra were recorded under 350 nm excitation at room temperature.
Fig. 4. Photocatalytic H2 evolution activity of different photocatalysts under visible light irradiation (λ > 420 nm). (a) PCN, CdSe and the heterostructures of CdSe/PCN with different percentages of CdSe from 40 wt.% to 80 wt.%. 3 wt.% Pt as cocatalyst was loaded by in-situ photoreduction of H2PtCl6. (b) CdSe(60 wt.%)/PCN with different amounts of Pt cocatalyst. (c) CdSe(60 wt.%)/PCN using two kinds of hole scavengers (TEOA, Na2S/Na2SO3). (d) Schematic of photo-carrier transfer and surface redox reactions in CdSe/PCN heterostructure.
| [1] |
T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387-399.
DOI |
| [2] | S. Wang, J.H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, J. Mater. Sci. Technol. 33 (2017) 1-22. |
| [3] |
A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253-278.
DOI URL |
| [4] |
P. Niu, T. Wu, L. Wen, J. Tan, Y. Yang, S. Zheng, Y. Liang, F. Li, J.T.S. Irvine, G. Liu, X. Ma, H.M. Cheng, Adv. Mater. 30 (2018) 1705999.
DOI URL |
| [5] | Y. Yang, L.C. Yin, Y. Gong, P. Niu, J.Q. Wang, L. Gu, X. Chen, G. Liu, L. Wang, H.M. Cheng, Adv. Mater. 30 (2018) 1704478. |
| [6] |
Z. Pan, R. Yanagi, Q. Wang, X. Shen, Q. Zhu, Y. Xue, J.A. Rohr, T. Hisatomi, K. Domen, S. Hu, Energy Environ. Sci. 13 (2020) 162-173.
DOI URL |
| [7] |
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411-414.
DOI URL |
| [8] |
S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ACS Appl. Energy Mater. 3 (2020) 1468-1475.
DOI URL |
| [9] |
R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun. 4 (2013) 1432.
DOI URL |
| [10] |
X. Liu, S. Gu, Y. Zhao, G. Zhou, W. Li, J. Mater. Sci. Technol. 56 (2020) 45-68.
DOI URL |
| [11] |
D.H.K. Murthy, H. Matsuzaki, Z. Wang, Y. Suzuki, T. Hisatomi, K. Seki, Y. Inoue, K. Domen, A. Furube, Chem. Sci. 10 (2019) 5353-5362.
DOI URL |
| [12] |
Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. Chen, N. Shi-bata, Y. Ikuhara, K. Domen, Nat. Catal. 1 (2018) 756-763.
DOI URL |
| [13] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2019) 76-80.
DOI URL |
| [14] |
Y. Wang, P. Du, H. Pan, L. Fu, Y. Zhang, J. Chen, Y. Du, N. Tang, G. Liu, Adv. Mater. 31 (2019) 1807540.
DOI URL |
| [15] |
M. Higashi, K. Domen, R. Abe, J. Am. Chem. Soc. 135 (2013) 10238-10241.
DOI URL |
| [16] |
K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, J. Am. Chem. Soc. 137 (2015) 2227-2230.
DOI URL |
| [17] |
T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, Chemcatchem 11 (2019) 1394-1411.
DOI URL |
| [18] |
Y.J. Yuan, D. Chen, Z.T. Yu, Z.G. Zou, J. Mater. Chem. A 6 (2018) 11606-11630.
DOI URL |
| [19] |
K. Zhang, L. Guo, Catal. Sci. Technol. 3 (2013) 1672-1690.
DOI URL |
| [20] |
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159-7329.
DOI URL |
| [21] |
L. Lin, Z. Yu, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 6164-6175.
DOI URL |
| [22] |
J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. An-tonietti, X. Wang, Angew. Chem. Int. Ed. 49 (2010) 441-444.
DOI URL |
| [23] |
S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao, Z. Lv, Dalton Trans 44 (2015) 1084-1092.
DOI URL |
| [24] |
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
DOI URL |
| [25] |
Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang, C. Tian, D. Zhao, H. Fu, J. Am. Chem. Soc. 141 (2019) 2508-2515.
DOI URL |
| [26] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, Adv. Mater. 29 (2017) 1601694.
DOI URL |
| [27] |
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43 (2014) 5234-5244.
DOI URL |
| [28] |
S.J.A Moniz. S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Energy Environ. Sci. 8 (2015) 731-759.
DOI URL |
| [29] |
Y. Li, X. Li, H. Zhang, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 56 (2020) 69-88.
DOI URL |
| [30] |
Y. Kang, Y. Yang, L.C. Yin, X. Kang, L. Wang, G. Liu, H.M. Cheng, Adv. Mater. 28 (2016) 6471-6477.
DOI URL |
| [1] | Jie Wang, Sijia Sun, Run Zhou, Yangzi Li, Zetian He, Hao Ding, Daimei Chen, Weihua Ao. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4 [J]. J. Mater. Sci. Technol., 2021, 78(0): 1-19. |
| [2] | Meng Wang, Kailiang Jian, Zepeng Lv, Dong Li, Gangqiang Fan, Run Zhang, Jie Dang. MoS2/Co9S8/MoC heterostructure connected by carbon nanotubes as electrocatalyst for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 29-34. |
| [3] | Yutao Hu, Hongwei Chu, Daozhi Li, Ying Li, Shengzhi Zhao, Li Dong, Dechun Li. Enhanced Q-switching performance of magnetite nanoparticle via compositional engineering with Ti3C2 MXene in the near infrared region [J]. J. Mater. Sci. Technol., 2021, 81(0): 51-57. |
| [4] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
| [5] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
| [6] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
| [7] | Guoquan Suo, Dan Li, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Qiyao Yu, Yanling Yang, Wei (Alex) Wang. Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 167-172. |
| [8] | Yiming Xiang, Qilin Zhou, Zhaoyang Li, Zhenduo Cui, Xiangmei Liu, Yanqin Liang, Shengli Zhu, Yufeng Zheng, Kelvin Wai Kwok Yeung, Shuilin Wu. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing [J]. J. Mater. Sci. Technol., 2020, 57(0): 1-11. |
| [9] | Yingzhi Chen, Dongjian Jiang, Zhengqi Gong, Qinglin Li, Ranran Shi, Zexi Yang, Ziyi Lei, Jingyuan Li, Lu-Ning Wang. Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation [J]. J. Mater. Sci. Technol., 2020, 38(0): 93-106. |
| [10] | O. Kapitanova Olesya, V. Emelin Evgeny, G. Dorofeev Sergey, V. Evdokimov Pavel, N. Panin Gennady, Lee Youngmin, Lee Sejoon. Direct patterning of reduced graphene oxide/graphene oxide memristive heterostructures by electron-beam irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 237-243. |
| [11] | Zheng Liu, Jieqiong Wang, Changhong Zhan, Jing Yu, Yang Cao, Jinchun Tu, Changsheng Shi. Phosphide-oxide honeycomb-like heterostructure CoP@CoMoO4/CC for enhanced hydrogen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2020, 46(0): 177-184. |
| [12] | Huaqiang Zhuang, Wentao Xu, Liqin Lin, Mianli Huang, Miaoqiong Xu, Shaoyun Chen, Zhenping Cai. Construction of one dimensional ZnWO4@SnWO4 core-shell heterostructure for boosted photocatalytic performance [J]. J. Mater. Sci. Technol., 2019, 35(10): 2312-2318. |
| [13] | Jingwei Guo, Hui Huang, Xiaomin Ren, Xin Yan, Shiwei Cai, Wei Wang, Yongqing Huang, Qi Wang, Xia Zhang. Realizing Zinc Blende GaAs/AlGaAs Axial and Radial Heterostructure Nanowires by Tuning the Growth Temperature [J]. J Mater Sci Technol, 2011, 27(6): 507-512. |
| [14] | Fedir Ivashchyshyn, Ivan Grygorchak, Olena Sudakova, Igor Bordun, Miroslav Micov. Influence of Magnetic Field and Lighting during the Creation Process of Nanohybrid Semiconductor-Nematic Structures on Their Impedance and Photo Response [J]. J Mater Sci Technol, 2011, 27(11): 973-978. |
| [15] | Xiaosheng FANG, Ujjal K.Gautamy, Yoshio B, O, Dmitri GOLBERG. One-dimensional ZnS-based Hetero-, Core/shell and Hierarchical Nanostructures [J]. J Mater Sci Technol, 2008, 24(04): 520-528. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
