J. Mater. Sci. Technol. ›› 2021, Vol. 87: 133-142.DOI: 10.1016/j.jmst.2021.01.054
• Research Article • Previous Articles Next Articles
Jie Xiongb,c, San-Qiang Shib,c,*(), Tong-Yi Zhanga,d,**(
)
Received:
2020-11-02
Revised:
2021-01-19
Accepted:
2021-01-19
Published:
2021-10-10
Online:
2021-03-17
Contact:
San-Qiang Shi,Tong-Yi Zhang
About author:
** School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China.E-mail addresses: zhangty@shu.edu.cn (T.-Y. Zhang).Jie Xiong, San-Qiang Shi, Tong-Yi Zhang. Machine learning of phases and mechanical properties in complex concentrated alloys[J]. J. Mater. Sci. Technol., 2021, 87: 133-142.
Fig. 1. Ashby plot of ultimate tensile strength versus hardness of CCAs with different phases, where the first phase in each label of multi-phases is the matrix, e.g., BCC is the matrix for BCC + FCC + B2.
Description | Abb. | Definition | |
---|---|---|---|
Elemental parameters | Atomic Number | AN | $\bar{x}=\sum a_{i}x_{i}$ $\delta_{x}=\sqrt{\sum a_{i}(1-x_{i}/\bar{x})^{2}}$ |
Metallic Radius | MR | ||
Melting Point | Tm | ||
Boiling Point | Tb | ||
Pauling Electronegativity | XP | ||
Electron Affinity | Eea | ||
First Ionization Potential | I1 | ||
Molar Heat Capacity | Cm | ||
Thermal Conductivity | K | ||
Valence Electron | VEC | ||
Heat of Fusion | Hf | ||
Thermodynamic parameters | Enthalpy of mixing | Hmix | ${{H}_{\text{mix}}}=4\underset{i=1}{\overset{N}{\mathop \sum }}\,\underset{j=1}{\overset{N}{\mathop \sum }}\,\text{ }\!\!\Delta\!\!\text{ }{{H}_{ij}}{{a}_{i}}{{a}_{j}}$ |
Entropy of mixing | Smix | ${{S}_{\text{mix}}}=-R\underset{i=1}{\overset{N}{\mathop \sum }}\,{{a}_{i}}\text{ln}{{a}_{i}}$ | |
Entropy of fusion | Sf | ${{S}_{f}}={}^{\overline{{{H}_{f}}}}/{}_{\overline{{{T}_{m}}}}$ | |
Gibbs free energy of mixing | Gmix | ${{G}_{\text{mix}}}={{H}_{\text{mix}}}-{{S}_{\text{mix}}}\text{ }\!\!\cdot\!\!\text{ }\overline{{{T}_{m}}}$ | |
The reciprocal of Ω | 1/Ω | $1/\Omega ={}^{\left| {{H}_{\text{mix}}} \right|}/{}_{\overline{{{T}_{m}}}{{S}_{\text{mix}}}}$ | |
VEC distributions | fraction of the electrons in the s valence orbitals | fs | ${{f}_{s}}={}^{\overline{s\text{VEC}}}/{}_{\overline{\text{VEC}}}$ |
fraction of the electrons in the p valence orbitals | fp | ${{f}_{s}}={}^{\overline{p\text{VEC}}}/{}_{\overline{\text{VEC}}}$ | |
fraction of the electrons in the d valence orbitals | fd | ${{f}_{s}}={}^{\overline{d\text{VEC}}}/{}_{\overline{\text{VEC}}}$ |
Table 1 Feature blocks consisting of elemental parameters, thermodynamic parameters, and VEC distributions.
Description | Abb. | Definition | |
---|---|---|---|
Elemental parameters | Atomic Number | AN | $\bar{x}=\sum a_{i}x_{i}$ $\delta_{x}=\sqrt{\sum a_{i}(1-x_{i}/\bar{x})^{2}}$ |
Metallic Radius | MR | ||
Melting Point | Tm | ||
Boiling Point | Tb | ||
Pauling Electronegativity | XP | ||
Electron Affinity | Eea | ||
First Ionization Potential | I1 | ||
Molar Heat Capacity | Cm | ||
Thermal Conductivity | K | ||
Valence Electron | VEC | ||
Heat of Fusion | Hf | ||
Thermodynamic parameters | Enthalpy of mixing | Hmix | ${{H}_{\text{mix}}}=4\underset{i=1}{\overset{N}{\mathop \sum }}\,\underset{j=1}{\overset{N}{\mathop \sum }}\,\text{ }\!\!\Delta\!\!\text{ }{{H}_{ij}}{{a}_{i}}{{a}_{j}}$ |
Entropy of mixing | Smix | ${{S}_{\text{mix}}}=-R\underset{i=1}{\overset{N}{\mathop \sum }}\,{{a}_{i}}\text{ln}{{a}_{i}}$ | |
Entropy of fusion | Sf | ${{S}_{f}}={}^{\overline{{{H}_{f}}}}/{}_{\overline{{{T}_{m}}}}$ | |
Gibbs free energy of mixing | Gmix | ${{G}_{\text{mix}}}={{H}_{\text{mix}}}-{{S}_{\text{mix}}}\text{ }\!\!\cdot\!\!\text{ }\overline{{{T}_{m}}}$ | |
The reciprocal of Ω | 1/Ω | $1/\Omega ={}^{\left| {{H}_{\text{mix}}} \right|}/{}_{\overline{{{T}_{m}}}{{S}_{\text{mix}}}}$ | |
VEC distributions | fraction of the electrons in the s valence orbitals | fs | ${{f}_{s}}={}^{\overline{s\text{VEC}}}/{}_{\overline{\text{VEC}}}$ |
fraction of the electrons in the p valence orbitals | fp | ${{f}_{s}}={}^{\overline{p\text{VEC}}}/{}_{\overline{\text{VEC}}}$ | |
fraction of the electrons in the d valence orbitals | fd | ${{f}_{s}}={}^{\overline{d\text{VEC}}}/{}_{\overline{\text{VEC}}}$ |
Dataset | PCC selected Features |
---|---|
ML-A | $\overline{AN},{{\delta }_{AN}},\overline{MR},{{\delta }_{MR}},{{\delta }_{Tb}},\overline{Tm},{{\delta }_{Tm}},\overline{Eea},{{\delta }_{Eea}},{{\delta }_{XP}},\overline{Hf},{{\delta }_{Hf}},$ $\overline{I 1}, \delta_{I 1}, \overline{C m}, \delta_{C m}, \overline{K}, \delta_{K}, \overline{\mathrm{VEC}}, \delta_{\mathrm{VEC}}, f_{p}, H_{\operatorname{mix}}, S_{\operatorname{mix}}, S_{f}$ |
ML-B | $\overline{AN},{{\delta }_{AN}},\overline{MR},{{\delta }_{MR}},{{\delta }_{Tb}},\overline{Tm},{{\delta }_{Tm}},\overline{Eea},{{\delta }_{Eea}},\overline{XP},{{\delta }_{XP}},{{\delta }_{Hf}},$ $\overline{I1},{{\delta }_{I1}},\overline{Cm},{{\delta }_{Cm}},\bar{K},{{\delta }_{K}},\overline{\text{VEC}},{{\delta }_{\text{VEC}}},{{f}_{p}},{{f}_{d}},{{H}_{mix}},{{S}_{\text{mix}}},{{S}_{f}},{{G}_{\text{mix}}}$ |
ML-C | $\overline{AN},{{\delta }_{AN}},{{\delta }_{MR}},{{\delta }_{Tb}},\overline{Tm},{{\delta }_{Tm}},\overline{Eea},{{\delta }_{Eea}},\overline{XP},{{\delta }_{XP}},{{\delta }_{Hf}},{{\delta }_{I1}},$ $\overline{Cm},{{\delta }_{Cm}},\bar{K},{{\delta }_{K}},\overline{\text{VEC}},{{\delta }_{\text{VEC}}},{{f}_{p}},{{H}_{\text{mix}}},{{S}_{\text{mix}}},{{S}_{f}},{{G}_{\text{mix}}},1/\Omega $ |
Table 2 The PCC selected features.
Dataset | PCC selected Features |
---|---|
ML-A | $\overline{AN},{{\delta }_{AN}},\overline{MR},{{\delta }_{MR}},{{\delta }_{Tb}},\overline{Tm},{{\delta }_{Tm}},\overline{Eea},{{\delta }_{Eea}},{{\delta }_{XP}},\overline{Hf},{{\delta }_{Hf}},$ $\overline{I 1}, \delta_{I 1}, \overline{C m}, \delta_{C m}, \overline{K}, \delta_{K}, \overline{\mathrm{VEC}}, \delta_{\mathrm{VEC}}, f_{p}, H_{\operatorname{mix}}, S_{\operatorname{mix}}, S_{f}$ |
ML-B | $\overline{AN},{{\delta }_{AN}},\overline{MR},{{\delta }_{MR}},{{\delta }_{Tb}},\overline{Tm},{{\delta }_{Tm}},\overline{Eea},{{\delta }_{Eea}},\overline{XP},{{\delta }_{XP}},{{\delta }_{Hf}},$ $\overline{I1},{{\delta }_{I1}},\overline{Cm},{{\delta }_{Cm}},\bar{K},{{\delta }_{K}},\overline{\text{VEC}},{{\delta }_{\text{VEC}}},{{f}_{p}},{{f}_{d}},{{H}_{mix}},{{S}_{\text{mix}}},{{S}_{f}},{{G}_{\text{mix}}}$ |
ML-C | $\overline{AN},{{\delta }_{AN}},{{\delta }_{MR}},{{\delta }_{Tb}},\overline{Tm},{{\delta }_{Tm}},\overline{Eea},{{\delta }_{Eea}},\overline{XP},{{\delta }_{XP}},{{\delta }_{Hf}},{{\delta }_{I1}},$ $\overline{Cm},{{\delta }_{Cm}},\bar{K},{{\delta }_{K}},\overline{\text{VEC}},{{\delta }_{\text{VEC}}},{{f}_{p}},{{H}_{\text{mix}}},{{S}_{\text{mix}}},{{S}_{f}},{{G}_{\text{mix}}},1/\Omega $ |
Fig. 3. The rank of features in the (a) ML-A, (b) ML-B, and (c) ML-C dataset resulting from on the SBS + RFC (in red), SFS + RFC (in blue), and MDI/RFC (in yellow).
Dataset | Feature set | Method | Features sorted by the feature rank |
---|---|---|---|
ML-A | OS-A | SBS + RFC | $\overline{MR}$, ${{\delta }_{Tb}}$, Hmix, $\overline{Eea}$, ${{\delta }_{Cm}}$ |
ML-B | OS-B | SFS + RFC | $\overline{\text{VEC}}$, $\overline{AN}$, Hmix, ${{\delta }_{K}}$, ${{\delta }_{Cm}}$ |
ML-C | OS-C | SFS + RFC | $\overline{AN}$, ${{\delta }_{AN}}$, ${{\delta }_{XP}}$, $\bar{K}$, Hmix |
Table 3 Finally selected features for ML-A, ML-B, and ML-C datasets.
Dataset | Feature set | Method | Features sorted by the feature rank |
---|---|---|---|
ML-A | OS-A | SBS + RFC | $\overline{MR}$, ${{\delta }_{Tb}}$, Hmix, $\overline{Eea}$, ${{\delta }_{Cm}}$ |
ML-B | OS-B | SFS + RFC | $\overline{\text{VEC}}$, $\overline{AN}$, Hmix, ${{\delta }_{K}}$, ${{\delta }_{Cm}}$ |
ML-C | OS-C | SFS + RFC | $\overline{AN}$, ${{\delta }_{AN}}$, ${{\delta }_{XP}}$, $\bar{K}$, Hmix |
Dataset | n_estimators | max_features | max_depth |
---|---|---|---|
Preset: [ | Preset: [ | Preset: None and [ | |
ML-A | 88 | 4 | None |
ML-B | 86 | 1 | None |
ML-C | 92 | 3 | 7 |
Table 4 Hyperparameters in the RFC models.
Dataset | n_estimators | max_features | max_depth |
---|---|---|---|
Preset: [ | Preset: [ | Preset: None and [ | |
ML-A | 88 | 4 | None |
ML-B | 86 | 1 | None |
ML-C | 92 | 3 | 7 |
Fig. 6. (a) The cross-validated NRMSE versus the feature number of each RFR model for hardness prediction, (b) ML-predicted hardness versus the measured values.
Fig. 7. (a) The cross-validated NRMSE versus the feature number of each RFR model for UTS prediction, (b) ML-predicted UTS versus the measured values.
Dataset | n_estimators | max_features | max_depth | CV-r | |||
---|---|---|---|---|---|---|---|
preset | result | preset | result | preset | result | ||
Hardness | [ | 90 | [ | 2 | None and [ | None | 0.9062 |
UTS | [ | 74 | [ | 1 | None and [ | None | 0.9498 |
Table 5 Hyperparameters in the RFR models.
Dataset | n_estimators | max_features | max_depth | CV-r | |||
---|---|---|---|---|---|---|---|
preset | result | preset | result | preset | result | ||
Hardness | [ | 90 | [ | 2 | None and [ | None | 0.9062 |
UTS | [ | 74 | [ | 1 | None and [ | None | 0.9498 |
Fig. 8. (a) Ranked mean absolute value of SHAP values of the 6 BSS + RFR selected features for hardness. The SHAP values (negative in blue, positive in red) of (b) $\overline{\text{VEC}}$, (c) ${{H}_{\text{mix}}}$, (d) ${{\delta }_{XP}}$, (e) $\overline{AN}$, (f) δCm, and (g) $\bar{K}$ for every one of the data.
Fig. 9. (a) Ranked mean absolute value of SHAP values of the 5 BSS + RFR selected features for UTS. The SHAP values (negative in blue, positive in red) of (b)δTb, (c) Hmix, (d) $\overline{AN}$, (f) $\bar{K}$, and (g) δK for every one of the data.
Alloy | $\overline{\text{VEC}}$ | ${{H}_{\text{mix}}}$ | ${{\delta }_{XP}}$ | δTb | Hardness (HV) | UTS (MPa) | Phases |
---|---|---|---|---|---|---|---|
CoCrFeNi | 8.25 | -3.75 | 0.0531 | 0.0328 | 173.6 (129.8 [ | 527.3 (480 [ | SP-FCC (FCC [ |
CoCrFeNiTi | 7.4 | -16.32 | 0.0802 | 0.0623 | 592.6 | 655.0 | MP-IM |
CoCrFeNiV | 7.6 | -8.96 | 0.0646 | 0.0754 | 377.5 | 424.1 (311 [ | MP-IM (FCC + σ [ |
CoCrFeNiMn | 8 | -4.16 | 0.0783 | 0.1101 | 175.7 (144.0 [ | 495.9 (494 [ | SP-FCC (FCC [ |
CoCrFeNiCu | 8.8 | 3.2 | 0.0502 | 0.0474 | 152.9 | 558.3 | SP-FCC |
CoCrFeNiZr | 7.4 | -22.72 | 0.1244 | 0.1846 | 616.5 | 1133.3 | MP-IM (BCC + C15 [ |
CoCrFeNiNb | 7.6 | -14.88 | 0.0694 | 0.2191 | 615.2 (602 [ | 1293.1 | MP-IM (FCC + C14 [ |
CoCrFeNiHf | 7.4 | -19.52 | 0.1313 | 0.2047 | 586.1 | 1209.0 | MP-IM (BCC + C36 [ |
Table 6 The feature values, ML-predicted mechanical properties and structures of CoCrFeNi-X (X = Ti, V, Mn, Cu, Zr, Nb, or Hf) CCAs, where mechanical properties and structures in parentheses are measured values.
Alloy | $\overline{\text{VEC}}$ | ${{H}_{\text{mix}}}$ | ${{\delta }_{XP}}$ | δTb | Hardness (HV) | UTS (MPa) | Phases |
---|---|---|---|---|---|---|---|
CoCrFeNi | 8.25 | -3.75 | 0.0531 | 0.0328 | 173.6 (129.8 [ | 527.3 (480 [ | SP-FCC (FCC [ |
CoCrFeNiTi | 7.4 | -16.32 | 0.0802 | 0.0623 | 592.6 | 655.0 | MP-IM |
CoCrFeNiV | 7.6 | -8.96 | 0.0646 | 0.0754 | 377.5 | 424.1 (311 [ | MP-IM (FCC + σ [ |
CoCrFeNiMn | 8 | -4.16 | 0.0783 | 0.1101 | 175.7 (144.0 [ | 495.9 (494 [ | SP-FCC (FCC [ |
CoCrFeNiCu | 8.8 | 3.2 | 0.0502 | 0.0474 | 152.9 | 558.3 | SP-FCC |
CoCrFeNiZr | 7.4 | -22.72 | 0.1244 | 0.1846 | 616.5 | 1133.3 | MP-IM (BCC + C15 [ |
CoCrFeNiNb | 7.6 | -14.88 | 0.0694 | 0.2191 | 615.2 (602 [ | 1293.1 | MP-IM (FCC + C14 [ |
CoCrFeNiHf | 7.4 | -19.52 | 0.1313 | 0.2047 | 586.1 | 1209.0 | MP-IM (BCC + C36 [ |
[1] |
J.W. Yeh, Ann. Chim. Sci. Des. Mater. 31 (2006) 633-648.
DOI URL |
[2] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
[3] | C. Zhang, M.C. Gao, High-Entropy Alloy, Springer International Publishing, Cham, 2016, pp. 399-444. |
[4] |
Z. Li, D. Raabe, JOM 69 (2017) 2099-2106.
DOI URL |
[5] | O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, J.Mater. Res. 33 (2018) 3092-3128. |
[6] |
K. Pan, Y. Yang, S. Wei, H. Wu, Z. Dong, Y. Wu, S. Wang, L. Zhang, J. Lin, X. Mao, J. Mater. Sci. Technol. 60 (2021) 113-127.
DOI URL |
[7] |
Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, H. Wu, X. Liu, H. Wang, S. Jiang, Z. Lu, J. Mater. Sci. Technol. 62 (2020) 214-220.
DOI URL |
[8] |
B. Cantor, I.T.H.H. Chang, P. Knight, A.J.B.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[9] |
M.C. Gao, D.B. Miracle, D. Maurice, X. Yan, Y. Zhang, J.A. Hawk, J. Mater. Res. 33 (2018) 3138-3155.
DOI URL |
[10] |
M. Gao, D. Alman, Entropy 15 (2013) 4504-4519.
DOI URL |
[11] |
T.T. Zuo, R.B. Li, X.J. Ren, Y. Zhang, J. Magn. Magn. Mater. 371 (2014) 60-68.
DOI URL |
[12] |
A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM 66 (2014) 1984-1992.
DOI URL |
[13] |
Y.F. Kao, S.K. Chen, J.H. Sheu, J.T. Lin, W.E. Lin, J.W. Yeh, S.J. Lin, T.H. Liou, C.W. Wang, Int. J. Hydrogen Energy 35 (2010) 9046-9059.
DOI URL |
[14] |
N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Mater. Sci. Eng. A 704 (2017) 82-90.
DOI URL |
[15] |
C.M. Lin, H.L. Tsai, Intermetallics 19 (2011) 288-294.
DOI URL |
[16] |
X. Yang, S.Y. Chen, J.D. Cotton, Y. Zhang, JOM 66 (2014) 2009-2020.
DOI URL |
[17] | Q.W. Xing, Y. Zhang, Chin. Phys. B 26 (2017) 1-9. |
[18] |
S. Gorsse, F. Tancret, J. Mater. Res. 33 (2018) 2899-2923.
DOI URL |
[19] |
W.P. Huhn, M. Widom, JOM 65 (2013) 1772-1779.
DOI URL |
[20] |
T. Zhang, Y. He, J. Wang, S. Sun, Sci. Sin. Technol. 49 (2019) 1148-1158.
DOI URL |
[21] |
J. Xiong, T. Zhang, S. Shi, Sci. China Technol. Sci. 63 (2020) 1247-1255.
DOI URL |
[22] |
X. Geng, H. Wang, W. Xue, S. Xiang, H. Huang, L. Meng, G. Ma, Comput. Mater. Sci. 171 (2020) 109235.
DOI URL |
[23] |
Y.T. Sun, H.Y. Bai, M.Z. Li, W.H. Wang, J. Phys. Chem. Lett. 8 (2017) 3434-3439.
DOI PMID |
[24] |
F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Sci. Adv. 4 (2018) eaaq1566.
DOI URL |
[25] |
J. Xiong, T.Y. Zhang, S.Q. Shi, MRS Commun. 9 (2019) 576-585.
DOI |
[26] |
J. Xiong, S.Q. Shi, T.Y. Zhang, Mater. Des. 187 (2020) 108378.
DOI URL |
[27] |
L. Ward, S.C. O’Keeffe, J. Stevick, G.R. Jelbert, M. Aykol, C. Wolverton, Acta Mater. 159 (2018) 102-111.
DOI URL |
[28] |
D.Z. Xue, D.Q. Xue, R.H. Yuan, Y.M. Zhou, P.V. Balachandran, X.D. Ding, J. Sun, T. Lookman, Acta Mater. 125 (2017) 532-541.
DOI URL |
[29] |
C. Wen, Y. Zhang, C.X. Wang, D.Z. Xue, Y. Bai, S. Antonov, L.H. Dai, T. Lookman, Y.J. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
[30] |
N. Islam, W. Huang, H.L. Zhuang, Comput. Mater. Sci. 150 (2018) 230-235.
DOI URL |
[31] |
W. Huang, P. Martin, H.L. Zhuang, Acta Mater. 169 (2019) 225-236.
DOI URL |
[32] | U. Bhandari, M.R. Rafi, C. Zhang, S. Yang, Mater. Today Commun. (2020), 101871. |
[33] |
D.B. Miracle, JOM 69 (2017) 2130-2136.
DOI URL |
[34] |
J.P. Couzinié, O.N. Senkov, D.B. Miracle, G. Dirras, Data Brief 21 (2018) 1622-1641.
DOI PMID |
[35] |
S. Gorsse, M.H. Nguyen, O.N. Senkov, D.B. Miracle, Data Brief 21 (2018) 2664-2678.
DOI PMID |
[36] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
[37] |
W.H. Wang, Prog. Mater. Sci. 57 (2012) 487-656.
DOI URL |
[38] |
A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Mater. Sci. Eng. A 533 (2012) 107-118.
DOI URL |
[39] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62 (2014) 105-113.
DOI URL |
[40] |
Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, T.G. Nieh, Acta Mater. 147 (2018) 213-225.
DOI URL |
[41] | H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29 (2017) 1-7. |
[42] |
A. Asabre, A. Kostka, O. Stryzhyboroda, J. Pfetzing-Micklich, U. Hecht, G. Laplanche, Mater. Des. 184 (2019), 108201.
DOI URL |
[43] |
G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J.P. Couzinié, L. Perrière, T. Chauveau, I. Guillot, Mater. Sci. Eng. A 654 (2016) 30-38.
DOI URL |
[44] |
L. Liu, J.B. Zhu, L. Li, J.C. Li, Q. Jiang, Mater. Des. 44 (2013) 223-227.
DOI URL |
[45] |
L. Liu, J.B. Zhu, C. Zhang, J.C. Li, Q. Jiang, Mater. Sci. Eng. A 548 (2012) 64-68.
DOI URL |
[46] |
C. Ng, S. Guo, J. Luan, Q. Wang, J. Lu, S. Shi, C.T. Liu, J. Alloys Compd. 584 (2014) 530-537.
DOI URL |
[47] |
G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloys Compd. 591 (2014) 11-21.
DOI URL |
[48] | C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A Phys.Metall. Mater. Sci. 36 (2005) 881-893. |
[49] |
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Intermetallics 60 (2015) 1-8.
DOI URL |
[50] |
Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, Mater. Lett. 130 (2014) 277-280.
DOI URL |
[51] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124-133.
DOI URL |
[52] |
L. Zhang, Y. Zhou, X. Jin, X. Du, B. Li, Scr. Mater. 146 (2018) 226-230.
DOI URL |
[53] |
Z.Y. Rao, X. Wang, J. Zhu, X.H. Chen, L. Wang, J.J. Si, Y.D. Wu, X.D. Hui, Intermetallics 77 (2016) 23-33.
DOI URL |
[54] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[55] |
X. Jin, Y. Zhou, L. Zhang, X. Du, B. Li, Mater. Lett. 216 (2018) 144-146.
DOI URL |
[56] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[57] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[58] |
J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, Mater. Sci. Forum 560 (2007) 1-9.
DOI URL |
[59] |
L. Breiman, Mach. Learn. 45 (2001) 5-32.
DOI URL |
[60] |
Q. Hu, S. Guo, J.M. Wang, Y.H. Yan, S.S. Chen, D.P. Lu, K.M. Liu, J.Z. Zou, X.R. Zeng, Sci. Rep. 7 (2017), 39917.
DOI PMID |
[61] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
[62] |
Y. Zhang, Y.J. Zhou, Mater. Sci. Forum 561-565 (2007) 1337-1339.
DOI URL |
[63] | R. Kozak, A. Sologubenko, W. Steurer, Zeitschrift Fur Krist 230 (2015) 55-68. |
[64] |
M. Fukuhara, M. Takahashi, Y. Kawazoe, A. Inoue, J. Alloys Compd. 483 (2009) 623-626.
DOI URL |
[65] |
Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, Y. Yang, Npj Comput. Mater. 5 (2019), 128.
DOI URL |
[66] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[67] |
S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21 (2011) 433-446.
DOI URL |
[68] |
M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, J.W. Yeh, Mater. Res. Lett. 1 (2013) 207-212.
DOI URL |
[69] |
Z. Leong, J.S. Wróbel, S.L. Dudarev, R. Goodall, I. Todd, D. Nguyen-Manh, Sci. Rep. 7 (2017), 39803.
DOI URL |
[70] |
Y. Zhang, C. Wen, C. Wang, S. Antonov, D. Xue, Y. Bai, Y. Su, Acta Mater. 170 (2020) 109-117.
DOI URL |
[71] |
S.A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, J. Schroers, Acta Mater. 166 (2019) 677-686.
DOI URL |
[72] | Z.S. Nong, J.C. Zhu, Y. Cao, X.W. Yang, Z.H. Lai, Y. Liu, Mater. Sci. Technol. (United Kingdom) 30 (2014) 363-369. |
[73] | T.M. Oshiro, P.S. Perez, J.A. Baranauskas, Lect. Notes Comput. Sci. (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2012. |
[74] | S.M. Lundberg, S.I. Lee, Adv. Neural Inf. Process. Syst. (2017) 4765-4774. |
[75] |
W.R.W.L. Wang, W.R.W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
[76] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116 (2016) 332-342.
DOI URL |
[77] |
N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, J. Alloys Compd. 628 (2015) 170-185.
DOI URL |
[78] |
M.H. Tsai, A.C. Fan, H.A. Wang, J. Alloys Compd. 695 (2017) 1479-1487.
DOI URL |
[79] |
H. Jiang, L. Jiang, D. Qiao, Y. Lu, T. Wang, Z. Cao, T. Li, J. Mater. Sci. Technol. 33 (2017) 712-717.
DOI |
[1] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[2] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[3] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[4] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[5] | Longyan Hou, Yiyong Wu, Debin Shan, Bin Guo, Yingying Zong. Dose rate effects on shape memory epoxy resin during 1 MeV electron irradiation in air [J]. J. Mater. Sci. Technol., 2021, 67(0): 61-69. |
[6] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[7] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[8] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[9] | Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85(0): 95-105. |
[10] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
[11] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[12] | Tobias Mittnacht, P.G. Kubendran Amos, Daniel Schneider, Britta Nestler. Morphological stability of three-dimensional cementite rods in polycrystalline system: A phase-field analysis [J]. J. Mater. Sci. Technol., 2021, 77(0): 252-268. |
[13] | Jie Xu, Xuan Kong, Minghui Chen, Qunchang Wang, Fuhui Wang. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation [J]. J. Mater. Sci. Technol., 2021, 82(0): 207-213. |
[14] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[15] | Zhihua Dong, Shuo Huang, Valter Ström, Guocai Chai, Lajos Károly Varga, Olle Eriksson, Levente Vitos. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature [J]. J. Mater. Sci. Technol., 2021, 79(0): 15-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||