J. Mater. Sci. Technol. ›› 2021, Vol. 84: 182-190.DOI: 10.1016/j.jmst.2021.02.001
• Research Article • Previous Articles Next Articles
Xianliang Houa, Shun Yaob, Zhen Wanga,b,*(), Changqing Fangb,**(
), Tiehu Lia
Received:
2020-04-21
Revised:
2020-09-23
Accepted:
2020-11-16
Published:
2021-09-10
Online:
2021-02-09
Contact:
Zhen Wang,Changqing Fang
About author:
** E-mail addresses: fcqxaut@163.com (C. Fang).Xianliang Hou, Shun Yao, Zhen Wang, Changqing Fang, Tiehu Li. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface[J]. J. Mater. Sci. Technol., 2021, 84: 182-190.
Fig. 1. (a) Schematic of the grafting processes to form BFS and BFS-NH2 hybrid filler; (b) illustration showing the fabrication processes of PLA/BF composites.
Mechanical properties | Tensile strengtha(MPa) | Impact strength* (kJ/m2) | Flexural strengtha (MPa) | Flexural modulusa (GPa) |
---|---|---|---|---|
PLA | 39.00 (2.20) | 15.82 (1.54) | 104.10 (3.24) | 3.26 (0.21) |
PLA/BF1 | 54.20 (3.50) | 17.65 (1.23) | 113.52 (2.95) | 3.73 (0.16) |
PLA/BF2 | 56.30 (2.70) | 18.48 (1.66) | 119.24 (3.45) | 4.22 (0.24) |
PLA/BF5 | 60.80 (2.90) | 19.16 (2.18) | 124.65 (4.43) | 4.48 (0.39) |
PLA/BF10 | 62.50 (3.10) | 19.79 (2.09) | 127.37 (4.32) | 4.65 (0.28) |
Table 1 Mechanical properties of neat PLA and PLA/BFS nanocomposites.
Mechanical properties | Tensile strengtha(MPa) | Impact strength* (kJ/m2) | Flexural strengtha (MPa) | Flexural modulusa (GPa) |
---|---|---|---|---|
PLA | 39.00 (2.20) | 15.82 (1.54) | 104.10 (3.24) | 3.26 (0.21) |
PLA/BF1 | 54.20 (3.50) | 17.65 (1.23) | 113.52 (2.95) | 3.73 (0.16) |
PLA/BF2 | 56.30 (2.70) | 18.48 (1.66) | 119.24 (3.45) | 4.22 (0.24) |
PLA/BF5 | 60.80 (2.90) | 19.16 (2.18) | 124.65 (4.43) | 4.48 (0.39) |
PLA/BF10 | 62.50 (3.10) | 19.79 (2.09) | 127.37 (4.32) | 4.65 (0.28) |
Fig. 4. (a) Stress?strain behavior and (b) tensile strength of PLA/BF composites with various basalt fiber contents. A macro photo of neat PLA and PLA-based composites was as inserted.
Mechanical properties | Tensile strengtha (MPa) | Impact strength (kJ/m2) | Flexural strengtha (MPa) | Flexural modulusa (GPa) |
---|---|---|---|---|
KH-550 | 62.50 (3.10) | 19.79 (2.09) | 127.37 (4.32) | 4.65 (0.28) |
SiO2 | 66.20 (3.30) | 20.81 (1.41) | 135.40 (4.76) | 4.92(0.11) |
SiO2+KH-550 | 74.00 (2.80) | 22.49 (1.76) | 146.83 (5.84) | 5.23 (0.30) |
HCl + SiO2 | 64.30 (3.10) | 20.33 (1.79) | 132.25 (5.12) | 4.85 (0.26) |
HCl + SiO2+KH-550 | 70.20 (4.00) | 21.67 (1.65) | 137.23 (6.03) | 5.01 (0.22) |
Table 2 Mechanical properties of PLA/BFS nanocomposites with different fiber surface treatment.
Mechanical properties | Tensile strengtha (MPa) | Impact strength (kJ/m2) | Flexural strengtha (MPa) | Flexural modulusa (GPa) |
---|---|---|---|---|
KH-550 | 62.50 (3.10) | 19.79 (2.09) | 127.37 (4.32) | 4.65 (0.28) |
SiO2 | 66.20 (3.30) | 20.81 (1.41) | 135.40 (4.76) | 4.92(0.11) |
SiO2+KH-550 | 74.00 (2.80) | 22.49 (1.76) | 146.83 (5.84) | 5.23 (0.30) |
HCl + SiO2 | 64.30 (3.10) | 20.33 (1.79) | 132.25 (5.12) | 4.85 (0.26) |
HCl + SiO2+KH-550 | 70.20 (4.00) | 21.67 (1.65) | 137.23 (6.03) | 5.01 (0.22) |
Fig. 7. (a) TG curves; (b) DTG curves of neat PLA and PLA/BFS composites and (c) DSC curves of neat PLA and PLA/BF composites; (d) Crystallinity of the PLA/BF composites.
[1] | G. Perego, G.D. Cella, Poly (lactic acid): Synthesis, Structures, Properties, Processing, and Applications, John Wiley & Sons, New Jersey, 2010. |
[2] |
M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, A.K. Mohanty, Prog. Polym. Sci. 38 (2013) 1653-1689.
DOI URL |
[3] |
Y. Yang, L. Zhang, Z. Xiong, Z. Tang, R. Zhang, J. Zhu, Sci. China Chem. 59 (2016) 1355-1368.
DOI URL |
[4] |
S. Farah, D.G. Anderson, R. Langer, Adv. Drug Del. Rev. 107 (2016) 367-392.
DOI URL |
[5] | D.Y. Bai, W. Ke, H.W. Bai, Z. Qin, F. Qiang, Acta Polym. Sin. 7 (2016) 843-849. |
[6] |
B.K. Goriparthi, K.N.S. Suman, M.R. Nalluri, Polym. Compos. 33 (2012) 237-244.
DOI URL |
[7] |
X. Xia, W. Liu, L. Zhou, Z. Hua, H. Liu, S. He, Iran. Polym. J. 25 (2016) 25-35.
DOI URL |
[8] |
R.M. Taib, H.M. Hassan, Z.A.M. Ishak, Polym.-Plast. Technol. Eng. 53 (2014) 199-206.
DOI URL |
[9] |
R. Tokoro, D.M. Vu, K. Okubo, T. Tanaka, T. Fujii, T. Fujiura, J. Mater. Sci. 43 (2008) 775-787.
DOI URL |
[10] |
R.T. Luiz Ferreira, I.C. Amatte, T.A. Dutra, D. Bürger, Compos. Part B 124 (2017) 88-100.
DOI URL |
[11] |
G. Liao, Z. Li, Y. Cheng, D. Xu, D. Zhu, S. Jiang, J. Guo, X. Chen, G. Xu, Y. Zhu, Mater. Des. 139 (2018) 283-292.
DOI URL |
[12] |
F. Ning, W. Cong, Y. Hu, H. Wang, J. Compos. Mater. 51 (2016) 451-462.
DOI URL |
[13] |
M. Jing, G. Sui, J. Zhao, Q. Zhang, Q. Fu, Compos. Part A 117 (2019) 219-229.
DOI URL |
[14] |
T. Kasuga, Y. Ota, M. Nogami, Y. Abe, Biomaterials 22 (2000) 19-23.
DOI URL |
[15] |
L. Sang, S. Han, Z. Li, X. Yang, W. Hou, Compos. Part B 164 (2019) 629-639.
DOI URL |
[16] |
T. Tábi, A.Z. égerházi, P. Tamás, T. Czigány, J.G. Kovács, Compos. Part A 64 (2014) 99-106.
DOI URL |
[17] |
B. Wei, H. Cao, S. Song, Mater. Des. 31 (2010) 4244-4250.
DOI URL |
[18] |
V. Lopresto, C. Leone, I.D. Iorio, Compos. Part B 42 (2011) 717-723.
DOI URL |
[19] |
Y.A. Kadykova, Russ. J. Appl. Chem. 85 (2012) 1434-1438.
DOI URL |
[20] |
L. Sang, G. Zheng, W. Hou, X. Yang, Z. Wei, J. Therm. Anal. Calorim. 134 (2018) 1531-1543.
DOI URL |
[21] |
D. Kurniawan, B.S. Kim, H.Y. Lee, J.Y. Lim, Compos. Part B 43 (2012) 1010-1014.
DOI URL |
[22] |
Z. Ying, D. Wu, M. Zhang, Y. Qiu, Compos. Struct. 176 (2017) 1020-1027.
DOI URL |
[23] | S.J. Park, J.S. Jin, J.R. Lee, J. Adhes, Sci. Technol. 14 (2000) 1677-1689. |
[24] |
J.M. Raquez, Y. Habibi, M. Murariu, P. Dubois, Prog. Polym. Sci. 38 (2013) 1504-1542.
DOI URL |
[25] |
M. Etcheverry, S.E. Barbosa, Materials 5 (2012) 1084-1113.
DOI PMID |
[26] |
X. Zhou, J. Su, C. Wang, C. Fang, X.Y. He, W.Q. Lei, C.Q. Zhang, Z.G. Huang, J. Mater. Sci. Technol. 46 (2020) 74-87.
DOI URL |
[27] | Y.C. Zhang, H.Y. Zhu, H.Y. Wu, Y.P. Qiu, Mater. Sci.Forum 610-613 (2009) 714-721. |
[28] |
J. Chen, X.R. Zhou, H.Y. Ge, D.Z. Wang, H.S. Liu, S. Li, Polym. Compos. 37 (2014) 334-341.
DOI URL |
[29] |
B. Wei, S. Song, H. Cao, Mater. Des. 32 (2011) 4180-4186.
DOI URL |
[30] | Y.L. Liu, S.J. Shen, L. Zhang, L.M. Shao, Adv. Mater. Res. 236-238 (2011) 1467-1471. |
[31] |
G.Z. Papageorgiou, D.S. Achilias, S. Nanaki, T. Beslikas, D. Bikiaris, Thermochim. Acta 511 (2010) 129-139.
DOI URL |
[32] |
N. Ning, S. Fu, W. Zhang, F. Chen, K. Wang, H. Deng, Prog. Polym. Sci. 37 (2012) 1425-1455.
DOI URL |
[1] | Yongren Wu, Shun Chen, Yang Liu, Zhiwei Lu, Shaokun Song, Yang Zhang, Chuanxi Xiong, Lijie Dong. One-step preparation of porous aminated-silica nanoparticles and their antibacterial drug delivery applications [J]. J. Mater. Sci. Technol., 2020, 50(0): 139-146. |
[2] | Neeraj, Pankaj Kumar, K.K. Raina. Analysis of Dielectric and Electro-optic Responses of Nanomaterials Doped Ferroelectric Liquid Crystal Mixture [J]. J Mater Sci Technol, 2011, 27(12): 1094-1098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||