J. Mater. Sci. Technol. ›› 2021, Vol. 76: 1-10.DOI: 10.1016/j.jmst.2020.09.041
• Research Article • Next Articles
Chatchai Rodwihoka,1, Korakot Charoensrib,1, Duangmanee Wongratanaphisanc, Won Mook Choia, Seung Hyun Hura, Hyun Jin Park*(), Jin Suk Chung*(
)
Received:
2020-07-13
Revised:
2020-09-06
Accepted:
2020-09-29
Published:
2021-06-20
Online:
2020-11-02
Contact:
Hyun Jin Park,Jin Suk Chung
About author:
jschung@ulsan.ac.kr(J.S. Chung).1These authors contributed equally to this work.
Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline[J]. J. Mater. Sci. Technol., 2021, 76: 1-10.
Samples | XRD | Zetasizer Nano ZS | |||
---|---|---|---|---|---|
Lattice constant (Å) | Crystal size (nm) | Average size (nm) | Zeta potential (mV) | ||
a | c | ||||
ZnO | 3.253 | 5.213 | 95.08 ± 5.52 | 198.23 ± 7.22 | 17.50 ± 0.46 |
ZnO/An1 | 3.253 | 5.213 | 84.00 ± 6.90 | 236.95 ± 6.86 | 22.63 ± 0.31 |
ZnO/An2 | 3.253 | 5.213 | 92.96 ± 5.76 | 262.69 ± 5.54 | 24.77 ± 0.31 |
ZnO/An3 | 3.253 | 5.213 | 89.85 ± 8.06 | 246.20 ± 5.69 | 25.87 ± 0.55 |
Table 1 Summaries of crystal information and surface charge.
Samples | XRD | Zetasizer Nano ZS | |||
---|---|---|---|---|---|
Lattice constant (Å) | Crystal size (nm) | Average size (nm) | Zeta potential (mV) | ||
a | c | ||||
ZnO | 3.253 | 5.213 | 95.08 ± 5.52 | 198.23 ± 7.22 | 17.50 ± 0.46 |
ZnO/An1 | 3.253 | 5.213 | 84.00 ± 6.90 | 236.95 ± 6.86 | 22.63 ± 0.31 |
ZnO/An2 | 3.253 | 5.213 | 92.96 ± 5.76 | 262.69 ± 5.54 | 24.77 ± 0.31 |
ZnO/An3 | 3.253 | 5.213 | 89.85 ± 8.06 | 246.20 ± 5.69 | 25.87 ± 0.55 |
Fig. 5. FT-IR of ZnO and functionalized ZnO samples; (a) 400-4000?cm-1, (b) C-N stretching region: 1350-1400?cm-1, and (c) N-H bend vibrational region: 1500-2000?cm-1.
Sample | UV-vis | Photocatalytic performance | |||
---|---|---|---|---|---|
Eg (eV) | MO degradation in 60 min | kc (min-1) | R2 | MO mineralization in 60 min | |
ZnO | 3.222 | 39.96 % | 0.008 | 0.9516 | 22.19% |
ZnO/An1 | 3.214 | 74.09% | 0.021 | 0.9635 | 27.12% |
ZnO/An2 | 3.219 | 96.63% | 0.054 | 0.9948 | 38.21% |
ZnO/An3 | 3.215 | 98.29 % | 0.066 | 0.9975 | 44.07% |
Table 2 Optical energy band gap and photocatalytic performance.
Sample | UV-vis | Photocatalytic performance | |||
---|---|---|---|---|---|
Eg (eV) | MO degradation in 60 min | kc (min-1) | R2 | MO mineralization in 60 min | |
ZnO | 3.222 | 39.96 % | 0.008 | 0.9516 | 22.19% |
ZnO/An1 | 3.214 | 74.09% | 0.021 | 0.9635 | 27.12% |
ZnO/An2 | 3.219 | 96.63% | 0.054 | 0.9948 | 38.21% |
ZnO/An3 | 3.215 | 98.29 % | 0.066 | 0.9975 | 44.07% |
Fig. 11. (a) Degradation and mineralization percentage of MO, (b) PL spectra of pristine ZnO and aniline functionalized ZnO catalyst, (c) photodegradation percentage of MO in the absence and presence of various scavenges (EDTA, p-Benzoquinone, and iso-propanol) under fluorescent illumination (Catalyst: ZnO/An3 sample) and (d) the adsorption process of MO (anionic dye) on aniline functionalized ZnO.
[1] | C. Rodwihok, D. Wongratanaphisan, T.V. Tam, W.M. Choi, S.H. Hur, J.S. Chung, Applied Sciences-Basel, 10 (2020), pp. 1697-1711 |
[2] |
M. Kumar, R. Tamilarasan, Polish J. Chem. Technol., 15 (2013), pp. 29-39
DOI URL |
[3] |
J.S. Chang, J. Strunk, M.N. Chong, P.E. Poh, J.D. Ocon, J. Hazard. Mater., 381 (2020), p. 120958
DOI URL |
[4] |
J. Kaur, S. Bansal, S. Singhal, Physica B-Condensed Matter, 416 (2013), pp. 33-38
DOI URL |
[5] |
A. Paliwal, A. Sharma, M. Tomar, V. Gupta, Sensors and Actuators B-Chemical, 250 (2017), pp. 679-685
DOI URL |
[6] | Y. Hou, A.H. Jayatissa, Prog. Natl. Sci.-Mater.Int., 27 (2017), pp. 435-442 |
[7] |
V.M. Latyshev, T.O. Berestok, A.S. Opanasyuk, A.S. Kornyushchenko, V.I. Perekrestov, Solid State Sci., 67 (2017), pp. 109-113
DOI URL |
[8] | W. Ponhan, S. Phadungdhitidhada, S. Choopun, Mater. Today Proc., 4 (2017), pp. 6342-6348 |
[9] |
A. Hezam, K. Namratha, Q.A. Drmosh, B.N. Chandrashekar, G.K. Jayaprakash, C. Cheng, S.S. Swamy, K. Byrappa, Ceram. Int., 44 (2018), pp. 7202-7208
DOI URL |
[10] |
T. Marimuthu, A. Narayanasamy, T. Rangasamy, J. Alloys. Compd., 693 (2016), pp. 1011-1019
DOI URL |
[11] |
A.F.V. da Fonseca, R.L. Siqueira, R. Landers, J.L. Ferrari, N.L. Marana, J.R. Sambrano, F.D. La Porta, M.A. Schiavon, J. Alloys. Compd., 739 (2018), pp. 939-947
DOI URL |
[12] |
T. Voss, S.R. Waldvogel, Mater. Sci. Semicond. Process., 69 (2017), pp. 52-56
DOI URL |
[13] |
M. Liu, K. Li, F.M. Kong, J. Zhao, Q.Y. Yue, X.J. Yu, Photon. Nanostruct.-Fund. Appl., 16 (2015), pp. 9-15
DOI URL |
[14] | T. Iqbal, A. Aziz, M.A. Khan, S. Andleeb, H. Mahmood, A.A. Khan, R. Khan, M. Shafique, Mater. Sci. Eng. B-Adv.Funct. Solid-State Mater., 228 (2018), pp. 153-159 |
[15] | G. Singh, E. Joyce, J. Beddow, T. Mason, World J. Microbiol. Biotechnol., 2 (2012), pp. 106-120 |
[16] |
P. Panchal, D.R. Paul, A. Sharma, P. Choudhary, P. Meena, S.P. Nehra, J. Colloid Interface Sci., 563 (2020), pp. 370-380
DOI URL |
[17] |
T. Lv, L.K. Pan, X.J. Liu, T. Lu, G. Zhu, Z. Sun, J. Alloys. Compd., 509 (2011), pp. 10086-10091
DOI URL |
[18] |
H. Jung, T.T. Pham, E.W. Shin, Appl. Surf. Sci., 458 (2018), pp. 369-381
DOI URL |
[19] |
J.J. He, C.G. Niu, C. Yang, J.D. Wang, X.T. Su, RSC Adv., 4 (2014), pp. 60253-60259
DOI URL |
[20] |
C. Rodwihok, S. Choopun, P. Ruankham, A. Gardchareon, S. Phadungdhitidhada, D. Wongratanaphisan, Appl. Surf. Sci., 477 (2019), pp. 159-165
DOI URL |
[21] |
S. Sucharitakul, R. Panyathip, S. Choopun, Materials, 11 (2018), pp. 1360-1374
DOI URL |
[22] | C. Khaywimut, C. Bhoomanee, S. Choopun, P. Ruankham, Mater. Today Proc., 17 (2019), pp. 1231-1239 |
[23] |
M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films, 605 (2016), pp. 2-19
DOI URL |
[24] | C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain.Energy Rev., 81 (2018), pp. 536-551 |
[25] |
H. Park, Y. Park, W. Kim, W. Choi, J. Photochem. Photobiol. C-Photochem. Rev., 15 (2013), pp. 1-20
DOI URL |
[26] |
A. Mondal, N. Giri, S. Sarkar, S. Majumdar, R. Ray, Mater. Sci. Semicond. Process., 91 (2019), pp. 333-340
DOI URL |
[27] |
N.R. Khalid, A. Hammad, M.B. Tahir, M. Rafique, T. Iqbal, G. Nabi, M.K. Hussain, Ceram. Int., 45 (2019), pp. 21430-21435
DOI |
[28] |
A. Riaz, A. Ashraf, H. Taimoor, S. Javed, M.A. Akram, M. Islam, M. Mujahid, I. Ahmad, K. Saeed, Coatings, 9 (2019), pp. 202-217
DOI URL |
[29] |
M. Fu, Y.L. Li, S.W. Wu, P. Lu, J. Liu, F. Dong, Appl. Surf. Sci., 258 (2011), pp. 1587-1591
DOI URL |
[30] |
H. Park, W. Choi, J. Phys. Chem. B, 109 (2005), pp. 11667-11674
DOI URL |
[31] |
H. Park, W. Choi, Langmuir, 22 (2006), pp. 2906-2911
DOI URL |
[32] |
R.Q. Guan, J.X. Li, J.K. Zhang, Z. Zhao, D.D. Wang, H.J. Zhai, D.W. Sun, ACS Omega, 4 (2019), pp. 20742-20747
DOI URL |
[33] |
D. Dash, N.R. Panda, D. Sahu, Appl. Surf. Sci., 494 (2019), pp. 666-674
DOI URL |
[34] |
R. Klaysri, T. Tubchareon, P. Praserthdam, J. Ind. Eng. Chem., 45 (2017), pp. 229-236
DOI URL |
[35] |
F. Cheng, S.M. Sajedin, S.M. Kelly, A.F. Lee, A. Kornherr, Carbohydr. Polym., 114 (2014), pp. 246-252
DOI PMID |
[36] | T. Santhaveesuk, K. Shimanoe, K. Suematsu, S. Choopun, Phys. Status Solidi, 215 (2018), p. 1700784 |
[37] |
C. Rodwihok, D. Wongratanaphisan, Y.L. Thi Ngo, M. Khandelwal, S.H. Hur, J.S. Chung, Nanomaterials, 9 (2019), p. 1441
DOI URL |
[38] |
H.G. Yu, P. Xiao, J. Tian, F.Z. Wang, J.G. Yu, ACS Appl. Mater. Interf., 8 (2016), pp. 29470-29477
DOI URL |
[39] | R. Koferstein, L. Jager, S.G. Ebbinghaus, Solid State Ion., 249 (2013), pp. 1-5 |
[40] |
H.P. Wu, S.L. Lin, C.X. Chen, W. Liang, X.Y. Liu, H.X. Yang, Mater. Res. Bull., 83 (2016), pp. 434-441
DOI URL |
[41] |
T.-D. Nguyen-Phan, E.J. Kim, S.H. Hahn, W.-J. Kim, E.W. Shin, J. Colloid Interface Sci., 356 (2011), pp. 138-144
DOI PMID |
[42] |
T.T. Pham, N.H. Chinh, H.J. Lee, T.D. Nguyen-Phan, T.H. Son, C.K. Kim, E.W. Shin, Ceram. Int., 41 (2015), pp. 11184-11193
DOI URL |
[43] |
S. Luo, C. Liu, S. Zhou, W. Li, C. Ma, S. Liu, W. Yin, H.J. Heeres, W. Zheng, K. Seshan, S. He, Chemosphere, 261 (2020), p. 127731
DOI URL |
[1] | Sukanta Bose, Sourav Mandal, Asok K. Barua, Sumita Mukhopadhyay. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 136-143. |
[2] | Suyun Liu, Li Liu, Ying Li, Fuhui Wang. Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating [J]. J. Mater. Sci. Technol., 2020, 39(0): 48-55. |
[3] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
[4] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[5] | Peng Chen, Shilin Zeng, Yunliang Zhao, Shichang Kang, Tingting Zhang, Shaoxian Song. Synthesis of unique-morphological hollow microspheres of MoS2@montmorillonite nanosheets for the enhancement of photocatalytic activity and cycle stability [J]. J. Mater. Sci. Technol., 2020, 41(0): 88-97. |
[6] | Na Wei, Yuan Lin, Zhenkui Li, Wenxia Sun, Guosong Zhang, Mingliang Wang, Hongzhi Cui. One-dimensional Ag2S/ZnS/ZnO nanorod array films for photocathodic protection for 304 stainless steel [J]. J. Mater. Sci. Technol., 2020, 42(0): 156-162. |
[7] | Changsong Chen, Jiang Chen, Zhen Wang, Jian Zhang, Haisheng San, Shichao Liu, Chunyu Wu, Werner Hofmann. Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics [J]. J. Mater. Sci. Technol., 2020, 54(0): 48-57. |
[8] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
[9] | Mir Ghasem Hosseini, Pariya Yardani Sefidi, Ahmet Musap Mert, Solen Kinayyigit. Investigation of solar-induced photoelectrochemical water splitting and photocatalytic dye removal activities of camphor sulfonic acid doped polyaniline -WO3- MWCNT ternary nanocomposite [J]. J. Mater. Sci. Technol., 2020, 38(0): 7-18. |
[10] | Lu Liu, Xi Hu, Hong-Yan Zeng, Mo-Yu Yi, Shi-Gen Shen, Sheng Xu, Xi Cao, Jin-Ze Du. Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors [J]. J. Mater. Sci. Technol., 2019, 35(8): 1691-1699. |
[11] | Manash Jyoti Deka, Devasish Chowdhury. Surface charge induced tuning of electrical properties of CVD assisted graphene and functionalized graphene sheets [J]. J. Mater. Sci. Technol., 2019, 35(1): 151-158. |
[12] | Igor Iatsunskyi, Margarita Baitimirova, Emerson Coy, Luis Yate, Roman Viter, Arunas Ramanavicius, Stefan Jurga, Mikhael Bechelany, Donats Erts. Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties [J]. J. Mater. Sci. Technol., 2018, 34(9): 1487-1493. |
[13] | Mina Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, Basavaraj Hungund. Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties [J]. J. Mater. Sci. Technol., 2018, 34(6): 1035-1043. |
[14] | Xiaogui Huang, Xiaozhang Zhan, Cuilian Wen, , Lijin Luo. Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb2+ and methyl orange sorption from aqueous solution [J]. J. Mater. Sci. Technol., 2018, 34(5): 855-863. |
[15] | Dunhua Hong, Guangzhong Cao, Junle Qu, Yuanming Deng, Jiaonin Tang. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites [J]. J. Mater. Sci. Technol., 2018, 34(12): 2359-2367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||