J. Mater. Sci. Technol. ›› 2021, Vol. 74: 11-20.DOI: 10.1016/j.jmst.2020.10.009
• Research Article • Previous Articles Next Articles
Bin Wanga, Yuanfu Chena,b,*(), Qi Wub,*(
), Yingjiong Lua, Xiaojuan Zhanga, Xinqiang Wanga, Bo Yua, DongXu Yanga, Wanli Zhanga
Received:
2020-06-24
Revised:
2020-07-30
Accepted:
2020-08-14
Published:
2021-05-30
Online:
2020-10-10
Contact:
Yuanfu Chen,Qi Wu
About author:
wuqi_zangda@163.com (Q. Wu).Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting[J]. J. Mater. Sci. Technol., 2021, 74: 11-20.
Fig. 3. (a) SEM image, (b) TEM, (c, d) HRTEM images, (c1-c2, d1-d2) zoomed views of the areas marked in the (c) and (d), respectively, (e-j) elemental mapping of the DLD-FeCoP@CNT.
Fig. 5. (a) Polarization curves and (b) Tafel plots. The comparison of OER activity (c) overpotential at 10 mA cm-2 and (d) Tafel slope of the DLD-FeCoP@CNT, SLD-CoP@CNT, SLD-FeP@CNT and RuO2 in 1 M KOH.
Fig. 6. (a) Polarization curves and (b) Tafel plots. The comparison of HER activity (c) overpotential at 10 mA cm-2 and (d) Tafel slope of the DLD-FeCoP@CNT, SLD-CoP@CNT, SLD-FeP@CNT and Pt/C in 1 M KOH.
Fig. 7. DFT calculations of CoP, FeP and Fe-CoP for HER: (a) atomic structure of a model Fe-doped CoP (111) surface, (b) HER free energy diagrams for the P-, Co- and Fe-sites on pristine and Fe-doped CoP (111) surfaces and FeP (011) surface, (c) spin-polarized density of states of plots. The Fermi level (dashed line) is set as zero.
Fig. 8. Performance of overall water electrolysis: (a) polarization curves of the DLD-FeCoP@CNT for HER and OER, (b) polarization curves of water electrolysis respectively using the DLD-FeCoP@CNT, SLD-CoP@CNT, SLD-FeP@CNT and commercial material as electrocatalysts both for HER and OER in a two-electrode configuration with a scan rate of 1 mV s-1, (c) the theoretical and experimental H2 or O2 vs time of the DLD-FeCoP@CNT at 1.67 V vs RHE, (d) chronoamperometry (i-t) curves of the DLD-FeCoP@CNT based electrode during overall water splitting at the applied potential of 1.74 V. The inset digital photographs in (c) and (d) are the corresponding partially amplified of glassy carbon electrode for observation of the gas evolution from the electrodes during water electrolysis. The inset plots in (d) is the curves of the raw DLD-FeCoP@CNT and electrolyte immersion treated DLD-FeCoP@CNT for water electrolysis.
[1] |
A. Wu, Y. Xie, H. Ma, C. Tian, Y. Gu, H. Yan, X. Zhang, G. Yang, H. Fu, Nano Energy 44 (2018) 353-363.
DOI URL |
[2] |
Y.J. Lu, Y.F. Chen, K. Srinivas, Z. Su, X.Q. Wang, B. Wang, D.X. Yang, Electrochim. Acta 350 (2020) 136338.
DOI URL |
[3] |
B. Wang, Y.F. Chen, X.Q. Wang, X.J. Zhang, Y. Hu, B. Yu, D.X. Yang, W.L. Zhang, J. Power Sources 449 (2020) 227561.
DOI URL |
[4] | Y. Ha, L.X. Shi, Z.L. Chen, R.B. Wu, Adv. Sci. 6 (2019) 1900272. |
[5] |
Z.C. Wang, H.L. Liu, R.X. Ge, X. Ren, J. Ren, D.J. Yang, L.X. Zhang, X.P. Sun, ACS Catal. 8 (2018) 2236-2241.
DOI URL |
[6] |
Y. Hu, B. Yu, W. Li, M. Ramadoss, Y. Chen, Nanoscale 11 (2019) 4876-4884.
DOI URL |
[7] |
Y. Hu, B. Yu, M. Ramadoss, W. Li, D. Yang, B. Wang, Y. Chen, ACS Sustain. Chem. Eng. 7 (2019) 10016-10024.
DOI |
[8] |
X. Wang, B. Zheng, B. Yu, B. Wang, W. Hou, W. Zhang, Y. Chen, J. Mater. Chem. A 6 (2018) 7842-7850.
DOI URL |
[9] |
B. Yu, F. Qi, B. Zheng, W. Hou, W. Zhang, Y. Li, Y. Chen, J. Mater. Chem. A 6 (2018) 1655-1662.
DOI URL |
[10] |
B. Yu, F. Qi, Y. Chen, X. Wang, B. Zheng, W. Zhang, Y. Li, L.C. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 30703-30710.
DOI URL |
[11] |
M. Ramadoss, Y. Chen, Y. Hu, D. Yang, Electrochim. Acta 321 (2019) 134666.
DOI URL |
[12] |
J. Zheng, X.L. Chen, X. Zhong, S.Q. Li, T.Z. Liu, G.L. Zhuang, X.N. Li, S.W. Deng, D.H. Mei, J.G. Wang, Adv. Funct. Mater. 27 (2017) 1704169.
DOI URL |
[13] |
B. Wang, Y. Hu, B. Yu, X. Zhang, D. Yang, Y. Chen, J. Power Sources 433 (2019) 126688.
DOI URL |
[14] |
Y.N. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z.L. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Adv. Mater. 31 (2019) 1807134.
DOI URL |
[15] |
Y.N. Guo, J. Tang, H.Y. Qian, Z.L. Wang, Y. Yamauchi, Chem. Mater. 29 (2017) 5566-5573.
DOI URL |
[16] |
Y.N. Guo, J. Tang, Z.L. Wang, Y.M. Kang, Y. Bando, Y. Yamauchi, Nano Energy 47 (2018) 494-502.
DOI URL |
[17] |
X.L. Fan, T. Wang, B. Gao, X.X. Xie, S.T. Zhang, X.G. Meng, H. Gong, Y.X. Guo, X.L. Huang, J.P. He, Catal. Today 335 (2019) 423-428.
DOI URL |
[18] |
Z. Qiu, C.W. Tai, G.A. Niklasson, T. Edvinsson, Energy Environ. Sci. 12 (2019) 572-581.
DOI URL |
[19] |
Y. Lu, W. Hou, D. Yang, Y. Chen, Electrochim. Acta 307 (2019) 543-552.
DOI URL |
[20] | Z.H. Xue, H. Su, Q.Y. Yu, B. Zhang, H.H. Wang, X.H. Li, J.S. Chen, Adv. Energy Mater. 7 (2017). |
[21] |
R. Beltrán-Suito, P.W. Menezes, M. Driess, J. Mater. Chem. A 7 (2019) 15749-15756.
DOI URL |
[22] |
D.X. Yang, W.Q. Hou, Y.J. Lu, W.L. Zhang, Y.F. Chen, Nanoscale 11 (2019) 12837-12845.
DOI URL |
[23] |
C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Nano Energy 48 (2018) 73-80.
DOI URL |
[24] |
L.M. Cao, Y.W. Hu, S.F. Tang, A. Iljin, J.W. Wang, Z.M. Zhang, T.B. Lu, Adv. Sci. 5 (2018) 1800949.
DOI URL |
[25] |
X.Q. Wang, Y. Chen, B. Yu, Z. Wang, H. Wang, B. Sun, W. Li, D. Yang, W. Zhang, Small 15 (2019) 1902613.
DOI URL |
[26] |
T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A.M. Asiri, X. Sun, L. Chen, ACS Catal. 7 (2016) 98-102.
DOI URL |
[27] |
R. Zhang, C. Tang, R. Kong, G. Du, A.M. Asiri, L. Chen, X. Sun, Nanoscale 9 (2017) 4793-4800.
DOI PMID |
[28] |
G. Zhang, B. Wang, J. Bi, D. Fang, S. Yang, J. Mater. Chem. A 7 (2019) 5769-5778.
DOI URL |
[29] |
J. Xu, J. Li, D. Xiong, B. Zhang, Y. Liu, K.H. Wu, I. Amorim, W. Li, L. Liu, Chem. Sci. 9 (2018) 3470-3476.
DOI URL |
[30] |
X. Wang, Z.J. Ma, L.L. Chai, L.Q. Xu, Z.Y. Zhu, Y. Hu, J.J. Qian, S.M. Huang, Carbon 141 (2019) 643-651.
DOI URL |
[31] |
J. Yu, Y. Zhong, X. Wu, J. Sunarso, M. Ni, W. Zhou, Z. Shao, Adv. Sci. 5 (2018) 1800514.
DOI URL |
[32] |
B.Y. Guan, X.Y. Yu, H.B. Wu, X.W.D. Lou, Adv. Mater. 29 (2017) 1703614.
DOI URL |
[33] |
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 140 (2018) 2610-2618.
DOI URL |
[34] |
X. Wang, L. Yu, B.Y. Guan, S. Song, X.W.D. Lou, Adv. Mater. 30 (2018) 1801211.
DOI URL |
[35] |
E. Hu, J. Ning, D. Zhao, C. Xu, Y. Lin, Y. Zhong, Z. Zhang, Y. Wang, Y. Hu, Small 14 (2018) 1704233.
DOI URL |
[36] |
J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu, W. Xing, ACS Catal. 5 (2015) 6874-6878.
DOI URL |
[37] |
Q. Liu, J.Q. Tian, W. Cui, P. Jiang, N.Y. Cheng, A.M. Asiri, X.P. Sun, Angew. Chem. Int. Ed. 53 (2014) 6710-6714.
DOI URL |
[38] |
Q. Liu, Y. Yang, B. Sun, D. Su, Z. Li, Q. Xia, G. Wang, Sensor Actuat. B 194 (2014) 27-32.
DOI URL |
[39] |
V. Tarachand, R. Sharma, V. Bhatt, G. Ganesan, Singh Okram, Nano Res. 9 (2016) 3291-3304.
DOI URL |
[40] |
X.Q. Wang, J.R. He, B. Yu, B.C. Sun, D.X. Yang, X.J. Zhang, Q.H. Zhang, W.L. Zhang, L. Gu, Y.F. Chen, Appl. Catal., B 258 (2019) 117996.
DOI URL |
[41] |
J.Y. Li, H.X. Liu, W.Y. Gou, M.K. Zhang, Z.M. Xia, S. Zhang, C.R. Chang, Y.Y. Ma, Y.Q. Qu, Energ. Environ. Sci. 12 (2019) 2298-2304.
DOI URL |
[42] |
X.T. Han, C. Yu, H.W. Huang, W. Guo, C.T. Zhao, H.L. Huang, S.F. Li, Z.B. Liu, X.Y. Tan, Z.M. Gao, J.H. Yu, J.S. Qiu, Nano Energy 62 (2019) 136-143.
DOI URL |
[43] |
W. Li, Y. Chen, B. Yu, Y. Hu, X. Wang, D. Yang, Nanoscale 11 (2019) 17031-17040.
DOI URL |
[44] |
H.L. Wu, L. Xia, J. Ren, Q.J. Zheng, C.G. Xu, D.M. Lin, J. Mater. Chem. A 5 (2017) 20458-20472.
DOI URL |
[45] |
Y. Li, Z.H. Dong, L.F. Jiao, Adv. Energy Mater. 10 (2019) 1902104.
DOI URL |
[46] |
W. Yang, J.B. Tian, L.Q. Hou, B.J. Deng, S. Wang, R. Li, F. Yang, Y.F. Li, ChemSusChem 12 (2019) 4662-4670.
DOI PMID |
[47] |
B. Wang, Y.F. Chen, X.Q. Wang, J. Ramkumar, X.J. Zhang, B. Yu, D.X. Yang, M. Karpuraranjith, W.L. Zhang, J. Mater. Chem. A 8 (2019) 13558-13571.
DOI URL |
[48] |
H. Hu, J.T. Zhang, B.Y. Guan, X.W. Lou, Angew. Chem. Int. Ed. 55 (2016) 9514-9518.
DOI URL |
[49] |
S. Niu, W.J. Jiang, T. Tang, L.P. Yuan, H. Luo, J.S. Hu, Adv. Funct. Mater. 29 (2019) 1902180.
DOI URL |
[50] |
K. Xi, D.Q. He, C. Harris, Y.K. Wang, C. Lai, H.L. Li, P.R. Coxon, S.J. Ding, C. Wang, R.V. Kumar, Adv. Sci. 6 (2019) 1800815.
DOI URL |
[51] |
H.J. Yan, Y. Xie, A.P. Wu, Z.C. Cai, L. Wang, C.G. Tian, X.M. Zhang, H.G. Fu, Adv. Mater. 31 (2019) 1901174.
DOI URL |
[52] |
H. Jiang, J.X. Gu, X.S. Zheng, M. Liu, X.Q. Qiu, L.B. Wang, W.Z. Li, Z.F. Chen, X.B. Ji, J. Li, Energy Environ. Sci. 12 (2019) 322-333.
DOI URL |
[53] |
J. Joo, T. Kim, J. Lee, S. Choi, K. Lee, Adv. Meter. 31 (2019) 1806682.
DOI URL |
[54] |
P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M. Driess, ACS Catal. 7 (2017) 103-109.
DOI URL |
[55] |
P.L. He, X.Y. Yu, X.W. Lou, Angew. Chem. Int. Ed. 56 (2017) 3897-3900.
DOI URL |
[56] |
X.F. Xiao, C.T. He, S.L. Zhao, J. Li, W.S. Lin, Z.K. Yuan, Q. Zhang, S.Y. Wang, L.M. Dai, D.S. Yu, Energy Environ. Sci. 10 (2017) 893-899.
DOI URL |
[57] |
F. Yu, H.Q. Zhou, Y.F. Huang, J.Y. Sun, F. Qin, J.M. Bao, W.A. Goddard, S. Chen, Z.F. Ren, Nat. Commun. 9 (2018) 2551.
DOI URL |
[58] |
J. Kibsgaard, T.F. Jaramillo, Angew. Chem. Int. Ed. 53 (2014) 14433-14437.
DOI URL |
[59] |
P.J. Pomonis, D.E. Petrakis, A.K. Ladavos, K.M. Kolonia, C.C. Pantazis, A.E. Giannakas, A.A. Leontiou, Catal. Commun. 6 (2005) 93-96.
DOI URL |
[60] |
Z.G. Wang, H.H. Wu, Q. Li, F. Besenbacher, Y.R. Li, X.C. Zeng, M.D. Dong, Adv. Sci. 7 (2020), 1901382.
DOI URL |
[61] | B. Yu, D.X. Yang, Y. Hu, J.R. He, Y.F. Chen, W.D. He, Mo2C Nanodots Anchored on N-Doped Porous CNT Microspheres as Electrode for Efficient Li-Ion Storage, Small Methods 3 (2018) 201800287. |
[62] |
G. Hu, Q. Tang, D.E. Jiang, Phys. Chem. Chem. Phys. 18 (2016) 23864-23871.
DOI URL |
[63] |
Y. Yan, X.R. Shi, M. Miao, T. He, Z.H. Dong, K. Zhan, J.H. Yang, B. Zhao, B.Y. Xia, Nano Res. 11 (2018) 3537-3547.
DOI URL |
[64] | J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152 (2005) 23-26. |
[65] |
D. Gao, J. Zhang, T. Wang, W. Xiao, K. Tao, D. Xue, J. Ding, J. Mater. Chem. A 4 (2016) 17363-17369.
DOI URL |
[1] | Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 119-127. |
[2] | Sheng Guo, Zhixiong Yang, Huali Zhang, Wei Yang, Jun Li, Kun Zhou. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate [J]. J. Mater. Sci. Technol., 2021, 62(0): 34-43. |
[3] | Shi Li, Luoyuan Ruan, Shanpeng Wang, Zhiyu Wang, Zhaohui Ren, Gaorong Han. Surface energy-driven solution epitaxial growth of anatase TiO2 homostructures for overall water splitting [J]. J. Mater. Sci. Technol., 2020, 46(0): 139-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||