J. Mater. Sci. Technol. ›› 2021, Vol. 74: 1-10.DOI: 10.1016/j.jmst.2020.10.002
• Research Article • Next Articles
Baoquan Wana, Haiyu Lia, Yunhui Xiaoa, Zhongbin Panb, Qiwei Zhanga,c,*()
Received:
2020-05-14
Revised:
2020-06-29
Accepted:
2020-09-04
Published:
2021-05-30
Online:
2020-10-08
Contact:
Qiwei Zhang
About author:
* Inner Mongolia Key Laboratory of Ferroelectric-related New Energy Materials and Devices, Inner Mongolia University of Science and Technology, 7# Arding Street, Kun District, Baotou 014010, China. E-mail address: zqw8000@imust.edu.cn (Q. Zhang).Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers[J]. J. Mater. Sci. Technol., 2021, 74: 1-10.
Fig. 2. The detailed fabrication processes of (a) BT-fibers and BN, (b) BT-fiber/BN/PI composite films, (c) BT-fiber@BN/PI composite films, (d) BT-fiber&BN/PI composite films.
Fig. 3. (a) XRD patterns of pure BT-fibers, BN, and three different composite fillers. (b)-(d) SEM images of BT-fiber/BN, BT-fiber@BN, and BT-fiber&BN fillers, respectively. (e) Magnified SEM image. (f)-(h) HRTEM images and SAED pattern of BT-fiber&BN.
Fig. 4. (a) XRD patterns of BT-fiber/BN/PI, BT-fiber@BN/PI and BT-fiber&BN/PI composite films with 15 wt% of fillers. (b) XRD patterns of BT-fiber&BN/PI composites with different mass fractions of 0, 1, 3, 5, 10, 15, and 20 wt%.
Samples | Dielectric constant (100 kHz) | Dielectric loss (100 kHz) | Dielectric constant (300℃) | Dielectric loss (300℃) | Average Eb (kV/cm) | Energy density (J/cm3) | Sample thickness (μm) |
---|---|---|---|---|---|---|---|
0 wt% | 3.89 | 0.0035 | 3.42 | 0.0027 | 3680 | 2.23 | 43.1 |
1 wt% | 4.48 | 0.0037 | 4.55 | 0.0024 | 3940 | 2.94 | 28.4 |
3 wt% | 5.33 | 0.0065 | 5.19 | 0.0032 | 4343 | 4.25 | 28.4 |
5 wt% | 5.36 | 0.0061 | 5.40 | 0.0021 | 3307 | 2.48 | 28.2 |
10 wt% | 6.13 | 0.0060 | 5.78 | 0.0033 | 2938 | 2.24 | 27.4 |
15 wt% | 6.55 | 0.0059 | 6.07 | 0.0034 | 2730 | 2.06 | 30.8 |
20 wt% | 7.81 | 0.0061 | 6.60 | 0.0040 | 2603 | 2.24 | 48.3 |
Table 1 Dielectric and energy storage properties of BT-fiber&BN/PI composite films.
Samples | Dielectric constant (100 kHz) | Dielectric loss (100 kHz) | Dielectric constant (300℃) | Dielectric loss (300℃) | Average Eb (kV/cm) | Energy density (J/cm3) | Sample thickness (μm) |
---|---|---|---|---|---|---|---|
0 wt% | 3.89 | 0.0035 | 3.42 | 0.0027 | 3680 | 2.23 | 43.1 |
1 wt% | 4.48 | 0.0037 | 4.55 | 0.0024 | 3940 | 2.94 | 28.4 |
3 wt% | 5.33 | 0.0065 | 5.19 | 0.0032 | 4343 | 4.25 | 28.4 |
5 wt% | 5.36 | 0.0061 | 5.40 | 0.0021 | 3307 | 2.48 | 28.2 |
10 wt% | 6.13 | 0.0060 | 5.78 | 0.0033 | 2938 | 2.24 | 27.4 |
15 wt% | 6.55 | 0.0059 | 6.07 | 0.0034 | 2730 | 2.06 | 30.8 |
20 wt% | 7.81 | 0.0061 | 6.60 | 0.0040 | 2603 | 2.24 | 48.3 |
Fig. 6. (a) Frequency dependences of the dielectric constant and loss of PI composite films with 15 wt% BT-fiber/BN, BT-fiber@BN, and BT-fiber&BN, (b) corresponding dielectric constant and loss values of composite films at 100 kHz. (c) Frequency dependences of the dielectric constant and loss of PI composite films with different mass fractions of BT-fiber&BN, (d) corresponding dielectric constant and loss of composite films at 100 kHz.
Fig. 7. (a) Temperature dependences of the dielectric constant and loss of PI composite films with 15 wt% BT-fiber/BN, BT-fiber@BN, and BT-fiber&BN. (b) Dielectric constant and loss of PI composite films at 300 ℃ and 100 kHz. (c) Temperature dependences of the dielectric constant and loss of PI composite films with different mass fractions of BT-fiber&BN. (d) Dielectric constant and loss of PI composite films at 300 ℃ and 100 kHz.
Fig. 9. (a) Breakdown distribution curves of BT-fiber&BN/PI composite films with different mass fractions. (b) Average breakdown strengths of PI composite films. (c) P-E loops of BT-fiber&BN/PI composite films under an electric field of 1000 kV/cm. (d) Calculated energy storage densities of PI composite films with different mass fractions of BT-fiber&BN.
Fig. 11. Schematic diagram of three different composite fillers: (a) BT-fiber/BN, (b) BT-fiber@BN, and (c) BT-fiber&BN. (a-1) Leakage current density, (a-2) electric field density, and (a-3) energy density of the cross section with BT-fiber/BN/PI composites. (b-1) Leakage current density, (b-2) electric field density, and (b-3) energy density of the cross section with BT-fiber@BN/PI composites. (c-1) Leakage current density, (c-2) electric field density, and (c-3) energy density of the cross section with BT-fiber&BN/PI composites.
[1] |
Y. Rao, C.P. Wong, J. Appl. Polym. Sci. 92 (2004) 2228-2231.
DOI URL |
[2] |
J.W. Zha, W.K. Li, R.J. Liao, J.B. Bai, Z.M. Dang, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 843-851.
DOI URL |
[3] |
W.Q. Hua, Z.Y. Huang, Q. Yu, Y.B. Wang, Y.D. Jiao, C. Lei, L.P. Cai, H.X. Zhai, Y. Zhou, J. Mater. Sci. Technol. 51 (2020) 70-78.
DOI URL |
[4] |
G.L. Chen, X.J. Lin, J.N. Li, S.F. Huang, X. Cheng, Appl. Surf. Sci. 513 (2020), 145877.
DOI URL |
[5] |
J.W. Zha, T.X. Zhu, Y.H. Wu, S.J. Wang, R.K.Y. Li, Z.M. Dang, J. Mater. Chem. C Mater. Opt. Electron. Devices 3 (2015) 7195-7202.
DOI URL |
[6] |
Z.H. Shen, J.J. Wang, Y. Lin, C.W. Nan, L.Q. Chen, Y. Shen, Adv. Mater. 30 (2018), 1704380.
DOI URL |
[7] |
L.L. Li, B. Zhou, J.F. Ye, W. Wu, F. Wen, Y.C. Xie, P. Bass, Z. Xu, L.W. Wang, G.F. Wang, Z.C. Zhang, J. Alloys. Compd. 831 (2020), 154770.
DOI URL |
[8] |
H.Q. Yang, S.W. Liu, L.H. Cao, S.H. Jiang, H.Q. Hou, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 21216-21224.
DOI URL |
[9] |
S.H. Jiang, D.H. Han, C.B. Huang, G.G. Duan, H.Q. Hou, Mater. Lett. 216 (2018) 81-83.
DOI URL |
[10] |
D. Kang, G. Wang, Y. Huang, P. Jiang, X. Huang, ACS Appl. Mater. Interfaces 10 (2018) 4077-4085.
DOI URL |
[11] |
Y. Wang, L. Wang, Q. Yuan, Y. Niu, J. Chen, Q. Wang, H. Wang, J. Mater. Chem. A Mater. Energy Sustain. 5 (2017) 10849-10855.
DOI URL |
[12] |
L. Wu, K. Wu, D. Liu, R. Huang, J. Huo, F. Chen, Q. Fu, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 7573-7584.
DOI URL |
[13] |
Z. Pan, J. Zhai, B. Shen, J. Mater. Chem. A Mater. Energy Sustain. 5 (2017) 15217-15226.
DOI URL |
[14] |
S.Y. Hou, W.L. Ma, G.H. Li, Y. Zhang, Y.Y. Ji, F. Fan, Y. Huang, J. Mater. Sci. Technol. 52 (2020) 136-144.
DOI URL |
[15] | R.G. He, H.J. Liu, H.M. Liu, D.F. Xu, L.Y. Zhang, J. Mater. Sci. Technol. 51 (2020) 145-151. |
[16] |
S.H. Liu, S.X. Xue, B. Shen, J.W. Zhai, Appl. Phys. Lett. 107 (2015), 032907.
DOI URL |
[17] |
F.H. Liu, Q. Li, J. Cui, Z.Y. Li, G. Yang, Y. Liu, L.J. Dong, C.X. Xiong, H. Wang, Q. Wang, Adv. Funct. Mater. 27 (2017), 1606292.
DOI URL |
[18] |
Z.Y. Li, F.H. Liu, G. Yang, H. Li, L.J. Dong, C.X. Xiong, Q. Wang, Compos. Sci. Technol. 164 (2018) 214-221.
DOI URL |
[19] |
J.C. Wang, Y. Sun, P.N. Wang, X.M. Yu, H.B. Shi, X.Q. Zhang, H. Yang, B.P. Lin, J. Alloys. Compd. 789 (2019) 785-791.
DOI URL |
[20] |
J.W. Chen, X.C. Wang, X.M. Yu, Y. Fan, Z.K. Duan, Y.W. Jiang, F.Q. Yang, Y.X. Zhou, Appl. Surf. Sci. 447 (2018) 704-710.
DOI URL |
[21] |
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5 (2010) 722.
DOI PMID |
[22] | A.F. Young, C.R. Dean, I. Meric, S. Sorgenfrei, H. Ren, K. Watanabe, T. Taniguchi, J. Hone, K.L. Shepard, P. Kim, Phys. Rev. B Condens.Matter Mater. Phys. 85 (2012), 235458. |
[23] |
Q. Li, G. Zhang, F. Liu, K. Han, M.R. Gadinski, C. Xiong, Q. Wang, Energy Environ. Sci. 8 (2015) 922-931.
DOI URL |
[24] |
J.W. Zha, X. Meng, D.R. Wang, Z.M. Dang, R.K.Y. Li, Appl. Phys. Lett. 104 (2014), 072906.
DOI URL |
[25] | M. Tanimoto, T. Yamagata, K. Miyata, S. Ando, ACS Appl. Mater. Interfaces 10 (2013) 4374-4382. |
[26] |
Y.F. Feng, Q. Wu, Q.H. Deng, C. Peng, J.B. Hu, Z.C. Xu, J. Mater. Chem. C Mater. Opt. Electron. Devices 7 (2019) 6744.
DOI URL |
[27] |
J.W. Zha, T. Yang, Z.M. Dang, T. Zhou, H.T. Song, S.T. Li, IEEE Trans. Dielectr. Electr. Insul. 19 (2012) 1312-1317.
DOI URL |
[28] |
X.X. Liu, T.Y. Ji, J.H. Yin, B. Su, Y. Li, Z.H. Wu, Mater. Des. 180 (2019), 107963.
DOI URL |
[29] |
S.B. Luo, J.Y. Yu, S.H. Yu, R. Sun, L.Q. Cao, W.H. Liao, C.P. Wong, Adv. Energy Mater. 9 (2019), 1803204.
DOI URL |
[30] |
S.H. Choi, I.D. Kim, J.M. Hong, K.H. Park, S.G. Oh, Mater. Lett. 61 (2007) 2478-2481.
DOI URL |
[31] |
I. Gouzman, E. Grossman, R. Verker, N. Atar, A. Bolker, N. Eliaz, Adv. Mater. 31 (2019), 1807738.
DOI URL |
[32] | X.X. Liu, T.Y. Ji, N. Li, Y. Liu, J.H. Yin, B. Su, J.P. Zhao, Y. Li, G. Mo, Z.H. Wu, Mater.Des. 180 (2019), 107963. |
[33] |
J.W. Zha, H.T. Song, Z.M. Dang, C.Y. Shi, J.B. Bai, Appl. Phys. Lett. 93 (2008), 192911.
DOI URL |
[34] |
K. Bi, M.H. Bi, Y.N. Hao, W. Luo, Z.M. Cai, X.H. Wang, Y.H. Huang, Nano Energy 51 (2018) 513-523.
DOI URL |
[35] |
Y. Feng, W.L. Li, Y.F. Hou, Y. Yu, W.P. Cao, T.D. Zhang, W.D. Fei, J. Mater. Chem. C Mater. Opt. Electron. Devices 3 (2015) 1250-1260.
DOI URL |
[36] | Z. Zhou, H. Wang, Z.C. Zhu, H. Yang, Q.L. Zhang, Colloids Surf. A Physicochem.Eng. Asp. 563 (2019) 59-67. |
[37] |
D. Ponnamma, M.A.A.A. Maadeed, Sustain. Energy Fuels 3 (2019) 774-785.
DOI URL |
[38] |
Y. Zhang, C.H. Zhang, Y. Feng, T.D. Zhang, Q.G. Chen, Q.G. Chi, L.Z. Liu, G.F. Li, Y. Cui, X. Wang, Z.M. Dang, Q.Q. Lei, Nano Energy 56 (2019) 138-150.
DOI |
[39] |
X.H. Zhang, S.D. Zhao, F. Wang, Y.H. Ma, L. Wang, D. Chen, C.W. Zhao, W.T. Yang, Appl. Surf. Sci. 403 (2017) 71-79.
DOI URL |
[40] |
G.Y. Wang, X.Y. Huang, P.K. Jiang, ACS Appl. Mater. Interfaces 9 (2017) 7547-7555.
DOI URL |
[41] |
T.J. Lewis, IEEE Trans. Dielectr. Electr. Insul. 11 (2004) 739-753.
DOI URL |
[42] |
T.J. Lewis, J. Phys. D 38 (2005) 202-212.
DOI URL |
[43] |
Prateek, V.K. Thakur, R.K. Gupta, Chem. Rev. 116 (2016) 4260-4317.
DOI URL |
[44] |
X. Zhang, W.W. Chen, J.J. Wang, Y. Shen, L. Gu, Y.H. Lin, C.W. Nan, Nanoscale 6 (2014) 6701-6709.
DOI PMID |
[45] |
Y.K. Zhu, Y.J. Zhu, X.Y. Huang, J. Chen, Q. Li, J.L. He, P.K. Jiang, Adv. Energy Mater. 9 (2019), 1901826.
DOI URL |
[46] |
Y.C. Xie, J. Wang, Y.Y. Yu, W.R. Jiang, Z.C. Zhang, Appl. Surf. Sci. 440 (2018) 1150-1158.
DOI URL |
[47] |
Q.G. Chi, B. Wang, T.D. Zhang, C.H. Zhang, Y.Q. Zhang, X. Wang, Q.Q. Lei, J. Mater. Sci.: Mater. Electron. 30 (2019) 19956-19965.
DOI URL |
[48] |
Z.B. Pan, L.M. Yao, J.W. Zhai, B. Shen, S.H. Liu, H.T. Wang, J.H. Liu, J. Mater. Chem. A Mater. Energy Sustain. 4 (2016) 13259-13264.
DOI URL |
[49] |
S. Li, G. Yin, G. Chen, J. Li, S. Bai, L. Zhong, Y. Zhang, Q. Lei, IEEE Trans. Dielectr. Electr. Insul. 17 (2010) 1523-1535.
DOI URL |
[50] |
G.S. Higashi, C.G. Fleming, Appl. Phys. Lett. 55 (1989) 1963-1965.
DOI URL |
[1] | Xingxing Liang, Ying Yang, Xin Jin, Jie Cheng. Polyethylene Oxide-Coated Electrospun Polyimide Fibrous Seperator for High-Performance Lithium-Ion Battery [J]. J. Mater. Sci. Technol., 2016, 32(3): 200-206. |
[2] | Juan Yang Yongsen Yang Qinqin Liu Guifang Xu Xiaonong Cheng. Preparation of Negative Thermal Expansion ZrW2O8 Powders and Its Application in Polyimide/ZrW2O8 Composites [J]. J Mater Sci Technol, 2010, 26(7): 665-668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||