J. Mater. Sci. Technol. ›› 2021, Vol. 65: 216-227.DOI: 10.1016/j.jmst.2020.04.073
• Research Article • Previous Articles Next Articles
Ting Xionga,b, Wenfan Yanga,b, Shijian Zhenga,c,*(), Zhaorui Liud,e, Yiping Luf, Ruifeng Zhangd,e,**(
), Yangtao Zhoua, Xiaohong Shaoa, Bo Zhanga, Jun Wangg, Fuxing Yinc, Peter K. Liawh,***(
), Xiuliang Maa,i,*(
)
Received:
2020-02-11
Revised:
2020-03-22
Accepted:
2020-04-03
Published:
2021-02-28
Online:
2021-03-15
Contact:
Shijian Zheng,Ruifeng Zhang,Peter K. Liaw,Xiuliang Ma
About author:
xlma@imr.ac.cn (X. Ma).Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1[J]. J. Mater. Sci. Technol., 2021, 65: 216-227.
Fig. 1. (a) The combined phase image-quality (IQ) map showing the representative microstructure of the as-cast EHEA. (b) Inverse pole figure (IPF) map along the normal direction of the sample (denoted by Z0) of the as-cast EHEA. (c) The misorientation angles of the point to the starting point along lines 1 and 2 in.(a) inside the FCC and B2 lamellae, respectively. (d) The misorientation angles of the point to the starting point along line 3 in.(a) crossing the two different crystallographic-orientation regions in the FCC phase.
Fig. 2. Overlapped pole figures from the EHEAs within the right grain showing the two variants of the 〈111〉B2||〈110〉FCC and {110}B2||{111}FCC OR: (a) V1: [$\overline{1}$11]B2||[$\overline{1}$10]FCC and (110)B2||(111)FCC; (b) V2: [$\overline{1}$11]B2||[01$\overline{1}$]FCC and (110)B2||(111)FCC. The right grain was rotated simultaneously to make the [$\overline{1}$11]B2 direction parallel to the normal direction of the sample (denoted by Z0) and the [110]B2 direction parallel to the horizontal direction of the sample (denoted by X0).
Fig. 3. (a) Flat lamella with the (321)B2||(112)FCC interface indicated with a yellow-dotted line and the corresponding composite diffraction patterns of both phases. (b) Globular platelet morphology showing the same OR presenting the interfaces, (321)B2||(112)FCC and (01$\overline{1}$)B2||(33$\overline{2}$)FCC, indicated with yellow and aqua blue dotted lines, respectively. (c) A simulated diffraction pattern of the composite diffraction pattern with the KS OR to determine the exact interface in (a and b).
Fig. 4. (a) A bright-field TEM micrograph showing the growth twin in the as-cast AlCoCrFeNi2.1 EHEA with the corresponding composite selected area electron diffraction (SAED) pattern of the B2, FCC matrix (V1), and FCC twin (V2) inset at the top right corner. (b) A sketch map of the corresponding interface planes due to the growth twin in the FCC phase. (c) A simulated diffraction pattern of the composite diffraction pattern with the two KS ORs to determine the exact interfaces formed along with the growth twin.
Fig. 6. Dislocation identification using the two-beam diffraction with different g vectors in the FCC phase: (a) g = (200); (b) g = (1 $\overline{1}$1); (c) g = (11 $\overline{1}$); (d) g = (002). The g vector is drawn with a black arrow. (e) Tracings of the visible dislocations in (a-d). The different colors distinguished the different Burgers vectors of each dislocation.
Operating reflection | Burgers vectors of dislocations | |||
---|---|---|---|---|
±[110] | ±[$\overline{1}$01] | ±[101] | ±[0$\overline{1}$1] | |
g = (11$\overline{1}$) | √ | √ | ☓ | √ |
g = (1$\overline{1}$1) | ☓ | ☓ | √ | √ |
g = (200) | √ | √ | √ | ☓ |
g = (002) | ☓ | √ | √ | √ |
Table 1 Invisibility criterion for diffraction and Burgers vectors of the dislocations in the FCC phase of Fig. 6. “√” and “?” represent the dislocation invisibility and visibility, respectively.
Operating reflection | Burgers vectors of dislocations | |||
---|---|---|---|---|
±[110] | ±[$\overline{1}$01] | ±[101] | ±[0$\overline{1}$1] | |
g = (11$\overline{1}$) | √ | √ | ☓ | √ |
g = (1$\overline{1}$1) | ☓ | ☓ | √ | √ |
g = (200) | √ | √ | √ | ☓ |
g = (002) | ☓ | √ | √ | √ |
Fig. 7. Pure screw dislocation with the Burgers vector, [11 $\overline{1}$] identification, using the two-beam diffraction with different g vectors in the B2 phase: a, g = (0 $\overline{1}$1); b, g = (110); c, g = (101); d, g = (001). The g vector is drawn with a black arrow. The beam directions of (a), (b), and (c) are near [$\overline{1}$11], and the beam direction of (d) is near [$\overline{1}$10].
Operating reflection | Burgers vectors of dislocations | ||||||
---|---|---|---|---|---|---|---|
±[111] | ±[$\overline{1}$11] | ±[1$\overline{1}$1] | ±[11$\overline{1}$] | ±[100] | ±[010] | ±[001] | |
g = (0$\overline{1}$1) | ☓ | ☓ | √ | √ | ☓ | √ | √ |
g = (110) | √ | ☓ | ☓ | √ | √ | √ | ☓ |
g = (101) | √ | ☓ | √ | ☓ | √ | ☓ | √ |
g = (001) | √ | √ | √ | √ | ☓ | ☓ | √ |
Table 2 Invisibility criterion for diffraction and Burgers vectors of the dislocations in the B2 phase of Fig. 7. “√” and “?” represent the dislocation invisibility and visibility, respectively. The Burgers vectors of the dislocations activated in Fig. 7 can be determined to be [11 $\overline{1}$].
Operating reflection | Burgers vectors of dislocations | ||||||
---|---|---|---|---|---|---|---|
±[111] | ±[$\overline{1}$11] | ±[1$\overline{1}$1] | ±[11$\overline{1}$] | ±[100] | ±[010] | ±[001] | |
g = (0$\overline{1}$1) | ☓ | ☓ | √ | √ | ☓ | √ | √ |
g = (110) | √ | ☓ | ☓ | √ | √ | √ | ☓ |
g = (101) | √ | ☓ | √ | ☓ | √ | ☓ | √ |
g = (001) | √ | √ | √ | √ | ☓ | ☓ | √ |
Fig. 8. (a) A bright-field TEM image presenting an array of dislocations piled up at the phase boundary. (b) A bright-field TEM image showing that the continuity of the slip traces in the B2 and FCC phases. (c) A magnified TEM image exhibiting dislocations in the FCC phase extended to the B2 phase.
Fig. 9. (a) The nearly-parallel termination interfaces of the B2 (the upper crystal) and FCC structures (the bottom crystal) are chosen to be clockwise rotated with angles from 0° to 180° between the termination interfaces and their respective parallel close-packed atom row of (110)B2||(111)FCC. (b) The calculated in-plane lattice mismatch parameter, δ, as well as the facet-deviation angle, φ, along the lateral direction with the variation of the rotation angle, θ. (c-r) The side views of the relaxed structure-atomic configurations when the interface rotated with different rotation angles and with the parallel compact planes in both phases.
Fig. 10. SEM images of the EHEA (a) before and (b) after the tensile test, showing that no macroscopic strain localization took place during deformation. (c) Inverse pole figure (IPF) map of the as-deformed EHEA. (d) Overlapped pole figures of the B2 and FCC phases in c, indicating that the KS OR remains after the deformation.
Fig. 11. The geometrical relationships among slip systems of the B2 and FCC phases with respect to two typical interfaces: (a) interface (321)B2||(112)FCC; (b) interface (01$\overline{1}$)B2||(33$\overline{2}$)FCC. The sketch maps showing that the intersection lines between the interfaces and the slip planes of the B2 and FCC phases are at the bottom right corner in (a and b).
Slip systems in the FCC phase | Interface: (321)B2||(112)FCC | Interface:(01$\overline{1}$)B2||(33$\overline{2}$)FCC | ||||||
---|---|---|---|---|---|---|---|---|
Paired slip systems in B2 | θ (º) | κ (º) | χ | Paired slip systems in B2 | θ (º) | κ (º) | χ | |
(111)[$\overline{1}$01]FCC | (110)[1$\overline{1}$1]B2 | 0 | 49.5 | 0 | (110)[1$\overline{1}$1]B2 | 0 | 49.5 | 0 |
(111)[0$\overline{1}$1]FCC | (110)[1$\overline{1}$1]B2 | 0 | 10.5 | 0.93 | (110)[1$\overline{1}$1]B2 | 0 | 10.5 | 0.93 |
(111)[$\overline{1}$10]FCC | (101)[$\overline{1}$11]B2 | 0 | 0 | 1 | (101)[$\overline{1}$11]B2 | 0 | 0 | 1 |
(0$\overline{1}$1)[$\overline{1}$11]B2 | 0 | 0 | 1 | (0$\overline{1}$1)[$\overline{1}$11]B2 | 0 | 0 | 1 | |
(110)[$\overline{1}$11]B2 | 0 | 0 | 1 | (110)[$\overline{1}$11]B2 | 0 | 0 | 1 | |
(11$\overline{1}$)[ | (0$\overline{1}$1)[ | 0 | 14.2 | 0.88 | (0$\overline{1}$1)[ | 0 | 14.2 | 0.88 |
(11$\overline{1}$)[ | (101)[11$\overline{1}$]B2 | 0 | 45.8 | 0 | (101)[11$\overline{1}$]B2 | 0 | 45.8 | 0 |
(11$\overline{1}$)[$\overline{1}$10]FCC | (101)[$\overline{1}$11]B2 | 0 | 0 | 1 | (101)[$\overline{1}$11]B2 | 0 | 0 | 1 |
(0$\overline{1}$1)[$\overline{1}$11]B2 | 0 | 0 | 1 | (0$\overline{1}$1)[$\overline{1}$11]B2 | 0 | 0 | 1 | |
(110)[$\overline{1}$11]B2 | 0 | 0 | 1 | (110)[$\overline{1}$11]B2 | 0 | 0 | 1 | |
($\overline{1}$11)[ | (011)[11$\overline{1}$]B2 | 14.6 | 20.1 | 0.03 | (011)[11$\overline{1}$]B2 | 2.7 | 20.1 | 0.73 |
($\overline{1}$11)[ | (011)[11$\overline{1}$]B2 | 14.6 | 45.8 | 0 | (011)[11$\overline{1}$]B2 | 2.7 | 45.8 | 0 |
($\overline{1}$11)[0$\overline{1}$1]FCC | ($\overline{1}$01)[1$\overline{1}$1]B2 | 5.9 | 10.5 | 0.76 | (011)[1$\overline{1}$1]B2 | 2.7 | 10.5 | 0.90 |
(1$\overline{1}$1)[ | ($\overline{1}$10)[11$\overline{1}$]B2 | 11.6 | 20.1 | 0.27 | ($\overline{1}$10)[11$\overline{1}$]B2 | 13.1 | 20.1 | 0.15 |
(1$\overline{1}$1)[ | ($\overline{1}$10)[ | 11.6 | 14.2 | 0.31 | ($\overline{1}$10)[ | 0 | 14.2 | 0.88 |
(1$\overline{1}$1)[$\overline{1}$01]FCC | ($\overline{1}$10)[ | 11.6 | 49.5 | 0 | ($\overline{1}$01)[1$\overline{1}$1]B2 | 13.1 | 49.5 | 0 |
Table 3 The θ (the angle between the intersection lines that each slip plane makes with the interface), κ (the angle between the Burgers vectors), and χ (the slip-transfer geometric factor) of the slip system pairs between the B2 and FCC phases.
Slip systems in the FCC phase | Interface: (321)B2||(112)FCC | Interface:(01$\overline{1}$)B2||(33$\overline{2}$)FCC | ||||||
---|---|---|---|---|---|---|---|---|
Paired slip systems in B2 | θ (º) | κ (º) | χ | Paired slip systems in B2 | θ (º) | κ (º) | χ | |
(111)[$\overline{1}$01]FCC | (110)[1$\overline{1}$1]B2 | 0 | 49.5 | 0 | (110)[1$\overline{1}$1]B2 | 0 | 49.5 | 0 |
(111)[0$\overline{1}$1]FCC | (110)[1$\overline{1}$1]B2 | 0 | 10.5 | 0.93 | (110)[1$\overline{1}$1]B2 | 0 | 10.5 | 0.93 |
(111)[$\overline{1}$10]FCC | (101)[$\overline{1}$11]B2 | 0 | 0 | 1 | (101)[$\overline{1}$11]B2 | 0 | 0 | 1 |
(0$\overline{1}$1)[$\overline{1}$11]B2 | 0 | 0 | 1 | (0$\overline{1}$1)[$\overline{1}$11]B2 | 0 | 0 | 1 | |
(110)[$\overline{1}$11]B2 | 0 | 0 | 1 | (110)[$\overline{1}$11]B2 | 0 | 0 | 1 | |
(11$\overline{1}$)[ | (0$\overline{1}$1)[ | 0 | 14.2 | 0.88 | (0$\overline{1}$1)[ | 0 | 14.2 | 0.88 |
(11$\overline{1}$)[ | (101)[11$\overline{1}$]B2 | 0 | 45.8 | 0 | (101)[11$\overline{1}$]B2 | 0 | 45.8 | 0 |
(11$\overline{1}$)[$\overline{1}$10]FCC | (101)[$\overline{1}$11]B2 | 0 | 0 | 1 | (101)[$\overline{1}$11]B2 | 0 | 0 | 1 |
(0$\overline{1}$1)[$\overline{1}$11]B2 | 0 | 0 | 1 | (0$\overline{1}$1)[$\overline{1}$11]B2 | 0 | 0 | 1 | |
(110)[$\overline{1}$11]B2 | 0 | 0 | 1 | (110)[$\overline{1}$11]B2 | 0 | 0 | 1 | |
($\overline{1}$11)[ | (011)[11$\overline{1}$]B2 | 14.6 | 20.1 | 0.03 | (011)[11$\overline{1}$]B2 | 2.7 | 20.1 | 0.73 |
($\overline{1}$11)[ | (011)[11$\overline{1}$]B2 | 14.6 | 45.8 | 0 | (011)[11$\overline{1}$]B2 | 2.7 | 45.8 | 0 |
($\overline{1}$11)[0$\overline{1}$1]FCC | ($\overline{1}$01)[1$\overline{1}$1]B2 | 5.9 | 10.5 | 0.76 | (011)[1$\overline{1}$1]B2 | 2.7 | 10.5 | 0.90 |
(1$\overline{1}$1)[ | ($\overline{1}$10)[11$\overline{1}$]B2 | 11.6 | 20.1 | 0.27 | ($\overline{1}$10)[11$\overline{1}$]B2 | 13.1 | 20.1 | 0.15 |
(1$\overline{1}$1)[ | ($\overline{1}$10)[ | 11.6 | 14.2 | 0.31 | ($\overline{1}$10)[ | 0 | 14.2 | 0.88 |
(1$\overline{1}$1)[$\overline{1}$01]FCC | ($\overline{1}$10)[ | 11.6 | 49.5 | 0 | ($\overline{1}$01)[1$\overline{1}$1]B2 | 13.1 | 49.5 | 0 |
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[3] |
F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater. 61 (2013) 2628-2638.
DOI URL |
[4] |
M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 72-73 (2014) 5-8.
DOI URL |
[5] |
H. Shen, J. Hu, P. Li, G. Huang, J. Zhang, J. Zhang, Y. Mao, H. Xiao, X. Zhou, X. Zu, X. Long, S. Peng, J. Mater. Sci. Technol. 55 (2020) 116-125.
DOI URL |
[6] |
M. Sahlberg, D. Karlsson, C. Zlotea, U. Jansson, Sci. Rep. 6 (2016) 36770.
DOI URL PMID |
[7] |
M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Acta Mater. 60 (2012) 5723-5734.
DOI URL |
[8] |
Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw, Acta Mater. 99 (2015) 247-258.
DOI URL |
[9] |
Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gaob, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, T.J. Li, J. Mater. Sci. Technol. 35 (2019) 369-373.
DOI URL |
[10] |
L.X. Yang, H.L. Ge, J. Zhang, T. Xiong, Q.Q. Jin, Y.T. Zhou, X.H. Shao, B. Zhang, Z.W. Zhu, S.J. Zheng, X.L. Ma, J. Mater. Sci. Technol. 35 (2019) 300-305.
DOI URL |
[11] |
Y.W. Zhang, G.M. Stocks, K. Jin, C.Y. Lu, H.B. Bei, B.C. Sales, L.M. Wang, L.K. Beland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, W.J. Weber, Nat. Commun. 6 (2015) 8736.
DOI URL PMID |
[12] | W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z.P. Lu, D. Li, Y. Li, C.T. Liu, X.Q. Chen, J. Mater. Sci. Technol. 34 (2018) 355-364. |
[13] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
[14] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[15] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI URL PMID |
[16] |
T.T. Shun, Y.C. Du, J. Alloys Compd. 479 (2009) 157-160.
DOI URL |
[17] |
L. Wang, C. Yao, J. Shen, Y. Zhang, T. Wang, Y. Ge, L. Gao, G. Zhang, Intermetallics 118 (2020), 106681.
DOI URL |
[18] |
Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[19] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Res. Lett. 4 (2016) 174-179.
DOI URL |
[20] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Sci. Eng. A. 675 (2016) 99-109.
DOI URL |
[21] |
P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P.K. Liaw, Nat. Commun. 10 (2019) 489.
DOI URL PMID |
[22] |
H. Zheng, R. Chen, G. Qin, X. Li, Y. Su, H. Ding, J. Guo, H. Fu, Intermetallics 113 (2019), 106569.
DOI URL |
[23] |
X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Acta Mater. 141 (2017) 59-66.
DOI URL |
[24] |
B.P. Eftink, A. Li, I. Szlufarska, N.A. Mara, I.M. Robertson, Acta Mater. 138 (2017) 212-223.
DOI URL |
[25] |
J. Wang, I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, Scr. Mater. 64 (2011) 1083-1086.
DOI URL |
[26] |
B.P. Eftink, A. Li, I. Szlufarska, I.M. Robertson, Acta Mater. 117 (2016) 111-121.
DOI URL |
[27] |
S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, I.J. Beyerlein, Acta Mater. 79 (2014) 282-291.
DOI URL |
[28] | A. Day, P. Trimby, Channel 5 Manual, HKL Technology Inc., Denmark, 2004. |
[29] |
H.J. Fecht, H. Gleiter, Acta Metall. 33 (1985) 557-562.
DOI URL |
[30] |
S. Ranganathan, Acta Crystallogr. 21 (1966) 197-199.
DOI URL |
[31] |
A.P. Sutton, R.W. Balluffi, Acta Metall. 35 (1987) 2177-2201.
DOI URL |
[32] |
A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18 (2010), 015012.
DOI URL |
[33] | G. Kurdjumow, G. Sachs, Z. Phys. 64 (1930) 325-343. |
[34] |
S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51 (2003) 1789-1799.
DOI URL |
[35] |
A. Ball, R.E. Smallman, Acta Metall. 14 (1966) 1517-1526.
DOI URL |
[36] |
C.L. Fu, M.H. Yoo, Acta Metall. Mater. 40 (1992) 703-711.
DOI URL |
[37] |
H. Saka, M. Kawase, Philos. Mag. A 49 (1984) 525-533.
DOI URL |
[38] |
A.T. Jennings, J.R. Greer, J. Mater. Res. 26 (2011) 2803-2814.
DOI URL |
[39] |
R.F. Zhang, J. Wang, I.J. Beyerlein, T.C. Germann, Scr. Mater. 65 (2011) 1022-1025.
DOI URL |
[40] |
K.H. Hahn, K. Vedula, Scr. Metall. 23 (1989) 7-12.
DOI URL |
[41] |
R.V. Mises, Z. Angew. Math. Mech. 8 (1928) 161-185.
DOI URL |
[42] |
R.F. Zhang, I.J. Beyerlein, S.J. Zheng, S.H. Zhang, A. Stukowski, T.C. Germann, Acta Mater. 113 (2016) 194-205.
DOI URL |
[43] |
R.F. Zhang, T.C. Germann, J. Wang, X.Y. Liu, I.J. Beyerlein, Scr. Mater. 68 (2013) 114-117.
DOI URL |
[44] |
S.J. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, N.A. Mara, Sci. Rep. 4 (2014).
DOI URL PMID |
[45] |
S.J. Zheng, I.J. Beyerlein, J.S. Carpenter, K.W. Kang, J. Wang, W.Z. Han, N.A. Mara, Nat. Commun. 4 (2013) 1696.
DOI URL PMID |
[46] |
S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, N.A. Mara, Acta Mater. 60 (2012) 5858-5866.
DOI URL |
[47] |
J. Wang, R.G. Hoagland, J.P. Hirth, A. Misra, Acta Mater. 56 (2008) 5685-5693.
DOI URL |
[48] |
A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53 (2005) 4817-4824.
DOI URL |
[49] |
J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, Philos. Mag. 42 (1951) 351-364.
DOI URL |
[50] |
J.S. Koehler, Phys. Rev. B 2 (1970) 547-551.
DOI URL |
[51] |
D.M. Martin, T.D. McGee, Acta Metall. 17 (1969) 929-932.
DOI URL |
[52] |
R.G. Hoagland, R.J. Kurtz, C.H. Henager, Scr. Mater. 50 (2004) 775-779.
DOI URL |
[53] |
G. Qin, R. Chen, P.K. Liaw, Y. Gao, X. Li, H. Zheng, L. Wang, Y. Su, J. Guo, H. Fu, Scr. Mater. 172 (2019) 51-55.
DOI URL |
[54] |
S.I. Rao, P.M. Hazzledine, D.M. Dimiduk, Mater. Res. Soc. Symp. Proc. 362 (1995) 67-77.
DOI URL |
[55] |
S.I. Rao, P.M. Hazzledine, Philos. Mag. A 80 (2000) 2011-2040.
DOI URL |
[56] |
S.M. Chung, A.U.J. Yap, W.K. Koh, K.T. Tsai, C.T. Lim, Biomaterials 25 (2004) 2455-2460.
DOI URL |
[57] |
G.B. Olson, M. Cohen, Acta Metall. 27 (1979) 1907-1918.
DOI URL |
[1] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[2] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[3] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[4] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[5] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[6] | Y.D. Liu, J. Sun, W. Li, W.S. Gu, Z.L. Pei, J. Gong, C. Sun. Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation [J]. J. Mater. Sci. Technol., 2021, 71(0): 44-54. |
[7] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[8] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[9] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[10] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
[11] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[12] | Peixing Chen, Sixiang Wang, Zhi Huang, Yan Gao, Yu Zhang, Chunli Wang, Tingting Xia, Linhao Li, Wanqian Liu, Li Yang. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration [J]. J. Mater. Sci. Technol., 2021, 70(0): 91-104. |
[13] | Lu Yang, Zhuo Cheng, Weiwei Zhu, Cancan Zhao, Fuzeng Ren. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure [J]. J. Mater. Sci. Technol., 2021, 73(0): 1-8. |
[14] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[15] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||