J. Mater. Sci. Technol. ›› 2021, Vol. 64: 73-84.DOI: 10.1016/j.jmst.2019.09.033
• Research Article • Previous Articles Next Articles
Hongze Ana, Zhengyi Xua, Guozhe Menga,b,*(), Weihua Lib,*(
), Yanqiu Wanga, Bin Liua, Junyi Wanga, Fuhui Wangc
Received:
2019-07-18
Accepted:
2019-09-19
Published:
2021-02-20
Online:
2021-03-15
Contact:
Guozhe Meng,Weihua Li
About author:
*. Southern Marine Science and Engineering GuangdongLaboratory, Sun Yat-sen University, Zhuhai 519082, China.E-mail addresses: mengguozhe@hrbeu.edu.cn (G. Meng),Hongze An, Zhengyi Xu, Guozhe Meng, Weihua Li, Yanqiu Wang, Bin Liu, Junyi Wang, Fuhui Wang. High corrosion resistance film on rebar by cerium modification[J]. J. Mater. Sci. Technol., 2021, 64: 73-84.
Fig. 2. TEM results of Ce film-35 °C on a rebar: (a-d) Surface scan maps of Ce, Fe, O elements for the cross section of the HAADF image, and surface (e) the corresponding data in the deep blue region of the HAADF image, and (f) the longitudinal section of Ce film on a rebar with the corresponding fast Fourier transform (FFT) image.
Sample | Ecorr (V) | ip (μA/cm2) | Epit (V) |
---|---|---|---|
Rebar | -0.26 | 24.31-32.30 | -0.06 |
Ce film-25 ℃ | -0.26 | 0.16-1.36 | 0.91 |
Ce film-35 ℃ | -0.24 | 0.02-1.03 | 0.89 |
Ce film-45 ℃ | -0.39 | 2.04-.11 | 0.41 |
Ce film-55 ℃ | -0.26 | 0.37-1.95 | 0.87 |
Table 1 Electrochemical parameters obtained by fitting the curves.
Sample | Ecorr (V) | ip (μA/cm2) | Epit (V) |
---|---|---|---|
Rebar | -0.26 | 24.31-32.30 | -0.06 |
Ce film-25 ℃ | -0.26 | 0.16-1.36 | 0.91 |
Ce film-35 ℃ | -0.24 | 0.02-1.03 | 0.89 |
Ce film-45 ℃ | -0.39 | 2.04-.11 | 0.41 |
Ce film-55 ℃ | -0.26 | 0.37-1.95 | 0.87 |
Fig. 4. EIS of rebar and Ce films treated at different temperatures in simulated concrete pore solutions with 0.6 M NaCl: (a) Nyquist plots, and (b) the corresponding data of the charging transfer resistance Rt plots. The inset in the top right corner of (a) shows the corresponding equivalent electrical circuit.
Sample | Rs (Ω cm2) | CPEf (×10-5S s-n cm-2) | n1 | Rfilm (×104 Ω cm2) | CPEdl (×10-5 S s-n cm-2) | n2 | Rt (×104 Ω cm2) |
---|---|---|---|---|---|---|---|
Rebar | 5.83 | 8.46 | 0.91 | 0.20 | 27.45 | 0.77 | 0.42 |
Ce film-25 ℃ | 5.53 | 19.86 | 0.72 | 1.41 | 43.86 | 0.96 | 30.80 |
Ce film-35 ℃ | 3.63 | 9.99 | 0.81 | 0.48 | 6.35 | 0.54 | 44.85 |
Ce film-45 ℃ | 4.56 | 36.40 | 0.69 | 0.38 | 82.56 | 0.95 | 22.50 |
Ce film-55 ℃ | 4.16 | 37.82 | 0.68 | 0.38 | 110.10 | 0.99 | 9.01 |
Table 2 Key electrochemical parameters obtained by fitting the EIS data.
Sample | Rs (Ω cm2) | CPEf (×10-5S s-n cm-2) | n1 | Rfilm (×104 Ω cm2) | CPEdl (×10-5 S s-n cm-2) | n2 | Rt (×104 Ω cm2) |
---|---|---|---|---|---|---|---|
Rebar | 5.83 | 8.46 | 0.91 | 0.20 | 27.45 | 0.77 | 0.42 |
Ce film-25 ℃ | 5.53 | 19.86 | 0.72 | 1.41 | 43.86 | 0.96 | 30.80 |
Ce film-35 ℃ | 3.63 | 9.99 | 0.81 | 0.48 | 6.35 | 0.54 | 44.85 |
Ce film-45 ℃ | 4.56 | 36.40 | 0.69 | 0.38 | 82.56 | 0.95 | 22.50 |
Ce film-55 ℃ | 4.16 | 37.82 | 0.68 | 0.38 | 110.10 | 0.99 | 9.01 |
Fig. 6. Mott-Schottky curves of rebar (a), Ce film-25 ℃ (b), Ce film-35 ℃ (c), Ce film-45 ℃ (d), Ce film-55 ℃ (e) and the donor density in simulated concrete pore solutions with 0.1 M NaCl for rebar and Ce films treated at different temperatures (f).
Fig. 7. (a) Double-layer capacitance as a function of electrode potential curves for rebar (a), Ce film-25 ℃ (b), Ce film-35 ℃ (c), Ce film-45 ℃ (d), Ce film-55 ℃ (e), and the polarization curves in simulated concrete pore solutions with 0.1 M NaCl for the rebar and Ce films treated at different temperatures (f).
Sample | Ce 3d | Fe 2p | |||
---|---|---|---|---|---|
Ce2O3 | CeO2 | Fe0 | Fe2+ | Fe3+ | |
Ce film-25 ℃ | 29.12 | 70.88 | 0 | 0 | 0 |
Ce film-35 ℃ | 32.99 | 67.01 | 0 | 0 | 0 |
Ce film-45 ℃ | 25.00 | 75.00 | 0 | 0 | 0 |
Ce film-55 ℃ | 20.42 | 79.58 | 0 | 0 | 0 |
Table 3 Atomic percentage (at.%) of different temperature Ce film.
Sample | Ce 3d | Fe 2p | |||
---|---|---|---|---|---|
Ce2O3 | CeO2 | Fe0 | Fe2+ | Fe3+ | |
Ce film-25 ℃ | 29.12 | 70.88 | 0 | 0 | 0 |
Ce film-35 ℃ | 32.99 | 67.01 | 0 | 0 | 0 |
Ce film-45 ℃ | 25.00 | 75.00 | 0 | 0 | 0 |
Ce film-55 ℃ | 20.42 | 79.58 | 0 | 0 | 0 |
Sample | Ce 3d | Fe 2p | |||
---|---|---|---|---|---|
Ce2O3 | CeO2 | Fe0 | Fe2+ | Fe3+ | |
Ce film-25 ℃ | 55.49 | 44.51 | 0 | 0 | 0 |
Ce film-35 ℃ | 53.19 | 46.81 | 0 | 0 | 0 |
Ce film-45 ℃ | 54.84 | 45.16 | 0 | 0 | 0 |
Ce film-55 ℃ | 50.99 | 49.01 | 18.40 | 41.33 | 40.27 |
Table 4 Atomic percentage (at.%) of different temperature Ce films after immersion in simulated concrete pore solutions with 0.1 M NaCl for 4 h.
Sample | Ce 3d | Fe 2p | |||
---|---|---|---|---|---|
Ce2O3 | CeO2 | Fe0 | Fe2+ | Fe3+ | |
Ce film-25 ℃ | 55.49 | 44.51 | 0 | 0 | 0 |
Ce film-35 ℃ | 53.19 | 46.81 | 0 | 0 | 0 |
Ce film-45 ℃ | 54.84 | 45.16 | 0 | 0 | 0 |
Ce film-55 ℃ | 50.99 | 49.01 | 18.40 | 41.33 | 40.27 |
Fig. 8. XPS survey spectra of Ce films treated at different temperatures before (a) and after (b) 4 h of corrosion in simulated concrete pore solutions with 0.1 M NaCl.
Fig. 9. Core-level spectra of Ce 3d for Ce films treated at different temperatures before (a-d) and after (e-h) 4 h of immersion in simulated concrete pore solutions with 0.1 M NaCl.
Fig. 10. Core-level spectra of Fe 2p for Ce films treated at different temperatures after 4 h of immersion in simulated concrete pore solutions with 0.1 M NaCl: (a) Ce film-25 ℃; (b) Ce film-35 ℃; (c) Ce film-45 ℃; (d) Ce film-55 ℃.
[1] | D. Song, A. Ma, W. Sun, J. Jiang, J. Jiang, D. Yang, G. Guo . Corros. Sci., 82 (2014), pp. 437-441 |
[2] | C. Bakis ., J. Compos. Constr., 6(2002), pp. 73-87. |
[3] | P. Waldron, E.A. Byars, V. Dejke, Int. Work. Compos. Constr. (2001), pp. 92-101. |
[4] | A.M. Rocco, T.M.C. Nogueira, R.A. Simão, W.C. Lima, Surf. Coat. Technol., 179(2004), pp. 135-144. |
[5] | G.O. Ilevbare, J.R. Scully, J. Yuan, R.G. Kelly , Corrosion, 56(2000), pp. 227-242. |
[6] | N.H.B. Hamid, E. Hamzah, Surf. Treat., IV(1999), pp. 33-41. |
[7] | A.A.O. Magalhães, I.C.P. Margarit, O.R. Mattos, Electrochim. Acta, 44(1999), pp. 4281-4287. |
[8] | X. Dou, Rare Earth Inf. (2005),pp. 28-29. |
[9] | O. Girčiene, L. Gudavičiute, A. Selskis, V. Jasulaitiene, S. Šakirzanovas, R. Ramanauskas , Chemija, 26(2015), pp. 175-183. |
[10] | B. Ramezanzadeh, M. Rostami , Appl. Surf. Sci., 392(2017), pp. 1004-1016. |
[11] | M. Kendig, C. Yan, , J. Electrochem. Soc., 151(2004), p. B679. |
[12] | L.M. Zhang, S.D. Zhang, A.L. Ma, A.J. Umoh, H.X. Hu, Y.G. Zheng, B.J. Yang, J.Q. Wang, J. Mater. Sci. Technol., 35(2019), pp. 1378-1387. |
[13] | D. Guergova, E. Stoyanova, D. Stoychev, I. Avramova, G. Atanasova, P. Stefanov , Izvestiya Po Khimiya Bulgarska Akademiya Na Naukite, 43(1) (2011), pp. 150-157. |
[14] | A.E. Somers, B.R.W. Hinton, C. de Bruin-Dickason, G.B. Deacon, P.C. Junk, M. Forsyth, Corros. Sci. ( 10.1016/j.corsci.2018.05.017. |
[15] | M. Rahman, M. Zahir, M. Haq, D. Shehri, A. Kumar , Coatings, 8(2018), p. 34. |
[16] | H. Vakili, B. Ramezanzadeh, R. Amini , Corros. Sci., 94(2015), pp. 466-475. |
[17] | Z. Li, J. Hu, Y. Li, F. Zheng, J. Liu , Surf. Coat. Technol., 341(2018), pp. 64-70. |
[18] | F. Rosalbino, G. Scavino , Mater. Corros., 68(2017), pp. 1212-1219. |
[19] | X. Li, S. Deng, H. Fu, G. Mu , Corros. Sci., 52(2010), pp. 1167-1178. |
[20] | M. Sánchez, M.C. Alonso, P. Cecílio, M.F. Montemor, C. Andrade , Cement Concrete Comp., 28(2006), pp. 256-266. |
[21] | M. van Soestbergen, S.J.F. Erich, H.P. Huinink, O.C.G. Adan, Electrochim. Acta, 110(2013), pp. 491-500. |
[22] | K. Aramaki , Corros. Sci., 43(2001), pp. 2201-2215. |
[23] | A. Esmaeilzare, S.M. Rezaei, B. Ramezanzadeh , Appl. Surf. Sci., 436(2018), pp. 1200-1212. |
[24] | G. Bahlakeh, B. Ramezanzadeh, M. Ramezanzadeh , Corros. Sci., 118(2017), pp. 69-83. |
[25] | J.Y. Jiang, D. Wang, H.Y. Chu, H. Ma, Y. Liu, Y. Gao, J. Shi, W. Sun, Mater. Basel (Basel), 10 (2017), 10.3390/ma10040412. |
[26] | Y.H. Lei, C.H. Wu, J. Guo, X. Jian, Y.X. Gao, J. Li, Passivation Mechanism of Carbon Steel Cerium Salt, International Conference on Electronic, Control, Automation and Mechanical Engineering , Sanya, China(2017). |
[27] | J. Liu, T. Zhang, G. Meng, Y. Shao, F. Wang , Corros. Sci., 91(2015), pp. 232-244. |
[28] | F. Safizadeh, G. Houlachi, E. Ghali , Int. J. Hydrogen Energy, 43(2018), pp. 7938-7945. |
[29] | B. Ramezanzadeh, G. Bahlakeh, M. Ramezanzadeh , Corros. Sci., 137(2018), pp. 111-126. |
[30] | F.H. Scholes, C. Soste, A.E. Hughes, S.G. Hardin, P.R. Curtis, Appl. Surf. Sci., 253(2006), pp. 1770-1780. |
[31] | G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, J. Mater. Sci. Technol., 30(2014), pp. 253-258. |
[32] | Q.Q. Do, H.Z. An, G.Z. Meng, W.H. Li, L.C. Zhang, Y.Q. Wang, B. Liu, J.Y. Wang, F.H. Wang, J. Mater. Sci. Technol., 35(2019), pp. 2144-2155. |
[33] | X. Li, Y. Zhao, W. Qi, J. Xie, J. Wang, B. Liu, G. Zeng, T. Zhang, F. Wang , Appl. Surf. Sci., 469(2019), pp. 146-161. |
[34] | T. Zhang, Y. Li, F. Wang , Corros. Sci., 48(2006), pp. 1249-1264. |
[35] | H. Luo, X. Wang, C. Dong, K. Xiao, X. Li , Corros. Sci., 124(2017), pp. 178-192. |
[36] | M. Liu, X. Cheng, X. Li, T.J. Lu, J. Electroanal. Chem., 803(2017), pp. 40-50. |
[37] | H.X. Guo, B.T. Lu, J.L. Luo , Electrochimi. Acta, 52(2006), pp. 1108-1116. |
[38] | D. Kong, A. Xu, C. Dong, F. Mao, K. Xiao, X. Li, D.D. Macdonald , Corros. Sci., 116(2017), pp. 34-43. |
[39] | Q. Do, H. An, G. Wang, G. Meng, Y. Wang, B. Liu, J. Wang, F. Wang , Corros. Sci., 147(2019), pp. 246-259. |
[40] | M.Q. Wang, Z.H. Zhou, Q.J. Wang, L.T. Wu, Z.H. Wang, X. Zhang, Appl. Surf. Sci., 495 (2019), Article 143600. |
[41] | G. Meng, F. Sun, Y. Shao, T. Zhang, F. Wang, C. Dong, X. Li , Electrochimi. Acta, 55(2010), pp. 2575-2581. |
[42] | S. Yang, D.D. Macdonald , Electrochimi. Acta, 52(2007), pp. 1871-1879. |
[43] | G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, X. Cheng, C. Dong, X. Li, J. Mater. Sci. Technol., 31(2015), pp. 1186-1192. |
[44] | E. McCafferty, Acid-Base Properties of Surface Oxide Films, Surface Chemistry of Aqueous Corrosion Processes, SpringerBriefs in Materials (2015), pp. 1-54. |
[45] |
D.E. Yates, T.W. Healy , J. Colloid Interface Sci., 52(1975), pp. 222-228.
DOI URL |
[46] |
X.Q. Cheng, Y. Wang, X.G. Li, C.F. Dong, J. Mater. Sci. Technol., 34(2018), pp. 2140-2148.
DOI URL |
[47] | Z. Ai, W. Sun, J. Jiang, D. Song, H. Ma, J. Zhang, D. Wang , Mater. Basel, 9(2016), p. 749. |
[48] |
P. Ghods, F. Bensebaa, D.J.C.S. Kingston , Corros. Sci., 58(2012), pp. 159-167.
DOI URL |
[49] |
M. Kumar, J.-H. Yun, V. Bhatt, B. Singh, J. Kim, J.-S. Kim, B.S. Kim, C.Y. Lee, Electrochim. Acta, 284(2018), pp. 709-720.
DOI URL |
[50] |
M.F. Montemor, A.M. Simões, M.J. Carmezim , Appl. Surf. Sci., 253(2007), pp. 6922-6931.
DOI URL |
[51] |
X. Li, H. Wang, C. Hu, M. Yang, H. Hu, J. Niu , Corros. Sci., 90(2015), pp. 331-339.
DOI URL |
[1] | Baojie Wang, Daokui Xu, Junhua Dong, Wei Ke. Effect of Texture on Biodegradable Behavior of an As-Extruded Mg-3%Al-1%Zn Alloy in Phosphate Buffer Saline Medium [J]. J. Mater. Sci. Technol., 2016, 32(7): 646-652. |
[2] | Xianfei Wang, Shoumei Xiong. Characterization of the Protective Surface Films Formed on Molten AZ91D Magnesium Alloy in SO2/Air Atmospheres in a Sealed Furnace [J]. J. Mater. Sci. Technol., 2014, 30(4): 353-358. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||