J. Mater. Sci. Technol. ›› 2021, Vol. 63: 210-215.DOI: 10.1016/j.jmst.2020.05.008
• Research Article • Previous Articles Next Articles
Xiaoxue Yuana,b, Ran Liud, Wenchang Zhanga,b, Xiaoqiang Songa,b, Lei Xua, Yan Zhaoa,*(
), Lei Shangc,*(
), Jingsong Zhanga,*(
)
Received:2019-12-18
Revised:2020-02-24
Accepted:2020-03-02
Published:2021-02-10
Online:2021-02-15
Contact:
Yan Zhao,Lei Shang,Jingsong Zhang
About author:jshzhang@imr.ac.cn (J. Zhang).Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine[J]. J. Mater. Sci. Technol., 2021, 63: 210-215.
| Samples | CMCS/SA (w/w) | Swelling rate (g/g) | Membrane thickness (mm) |
|---|---|---|---|
| C1 | 2:3 | 22.16 ± 0.46 | 0.074 ± 5.8E-4 |
| C2 | 9:11 | 19.06 ± 0.22 | 0.080 ± 5.8E-4 |
| C3 | 1:1 | 14.95 ± 0.83 | 0.075 ± 0.0012 |
| C4 | 13:7 | 9.55 ± 0.37 | 0.078 ± 0.0015 |
| C5 | 7:3 | 7.68 ± 0.45 | 0.086 ± 0.0027 |
| C6 | 3:1 | 5.78 ± 0.28 | 0.081 ± 0.0027 |
Table 1 Swelling rate and membrane thickness of different CMCS/SA ratio hydrogels.
| Samples | CMCS/SA (w/w) | Swelling rate (g/g) | Membrane thickness (mm) |
|---|---|---|---|
| C1 | 2:3 | 22.16 ± 0.46 | 0.074 ± 5.8E-4 |
| C2 | 9:11 | 19.06 ± 0.22 | 0.080 ± 5.8E-4 |
| C3 | 1:1 | 14.95 ± 0.83 | 0.075 ± 0.0012 |
| C4 | 13:7 | 9.55 ± 0.37 | 0.078 ± 0.0015 |
| C5 | 7:3 | 7.68 ± 0.45 | 0.086 ± 0.0027 |
| C6 | 3:1 | 5.78 ± 0.28 | 0.081 ± 0.0027 |
Fig. 2. Photos of CMCS/SA hydrogels with different mass ratios (a); The SEM photo of the 1:1 lyophilized hydrogel (scale bar: 100 μm) (b); The transmittance curves of CMCS/SA solution (c) and hydrogels (d); TG curves (e) and DTA curves (f) of CMCS, SA, CMCS/SA solution and CMCS/SA hydrogels.
Fig. 4. Stress-strain curves (a), tensile strength and elongation (b) and product of strength and elongation (c) of membranes with different CMCS/SA ratios.
Fig. 5. The accumulative amount of drug received in the receptor chamber versus time (a) and the fitting curves (b) for membranes with different CMCS/SA ratios (n = 3).
| Samples | Fitting parameters | Cumulative permeability [μg (cm2)-1] | Steady state permeation rate [g (cm2)-1 h-1] | ||
|---|---|---|---|---|---|
| Fitting curves | Adj.R-Square | n | |||
| C1 | Y = 1.17111x+ 0.65325 | 0.99045 | 1.17111 | 43.5956 ± 4.1229 | 6.4125 ± 0.4655 |
| C2 | Y = 1.11726x+ 0.68201 | 0.98816 | 1.11726 | 42.3062 ± 1.7272 | 6.3342 ± 0.1770 |
| C3 | Y = 1.08095x+ 0.65253 | 0.99388 | 1.08095 | 37.4146 ± 2.1937 | 5.5595 ± 0.3149 |
| C4 | Y = 1.14836x +0.56366 | 0.99520 | 1.14836 | 35.2966 ± 0.3316 | 5.0592 ± 0.4765 |
| C5 | Y = 1.26895x +0.69062 | 0.99906 | 1.26895 | 65.0850 ± 7.7380 | 9.2074 ± 2.7809 |
| C6 | Y = 1.18758x +0.97636 | 0.99515 | 1.18758 | 96.8781 ± 8.1719 | 13.9043 ± 2.4643 |
Table 2 In vitro permeation parameters for different CMCS/SA ratios.
| Samples | Fitting parameters | Cumulative permeability [μg (cm2)-1] | Steady state permeation rate [g (cm2)-1 h-1] | ||
|---|---|---|---|---|---|
| Fitting curves | Adj.R-Square | n | |||
| C1 | Y = 1.17111x+ 0.65325 | 0.99045 | 1.17111 | 43.5956 ± 4.1229 | 6.4125 ± 0.4655 |
| C2 | Y = 1.11726x+ 0.68201 | 0.98816 | 1.11726 | 42.3062 ± 1.7272 | 6.3342 ± 0.1770 |
| C3 | Y = 1.08095x+ 0.65253 | 0.99388 | 1.08095 | 37.4146 ± 2.1937 | 5.5595 ± 0.3149 |
| C4 | Y = 1.14836x +0.56366 | 0.99520 | 1.14836 | 35.2966 ± 0.3316 | 5.0592 ± 0.4765 |
| C5 | Y = 1.26895x +0.69062 | 0.99906 | 1.26895 | 65.0850 ± 7.7380 | 9.2074 ± 2.7809 |
| C6 | Y = 1.18758x +0.97636 | 0.99515 | 1.18758 | 96.8781 ± 8.1719 | 13.9043 ± 2.4643 |
| [1] |
Y.W. Chen, Y.F. Zhang, X.S. Feng, Chem. Eng. Sci. 65 (2010) 5921-5928.
DOI URL |
| [2] |
W.L. Lee, W.X. Shi, Z.Y. Low, S.Z. Li, S.C.J. Loo, J. Biomed. Mater. Res. A 100a (2012) 3353-3362.
DOI URL |
| [3] |
R. Langer, Science 249 (1990) 1527-1533.
DOI URL PMID |
| [4] |
N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Chem. Rev. 116 (2016) 2602-2663.
DOI URL PMID |
| [5] |
P. Ding, K.L. Huang, G.Y. Li, Y.F. Liu, Int. J. Biol. Macromol. 41 (2007) 125-131.
URL PMID |
| [6] |
D. Jain, D. Bar-Shalom, Drug Dev. Ind. Pharm. 40 (2014) 1576-1584.
DOI URL |
| [7] |
T.M. Don, M.L. Huang, A.C. Chiu, K.H. Kuo, W.Y. Chiu, L.H. Chiu, Mater. Chem. Phys. 107 (2008) 266-273.
DOI URL |
| [8] |
C. Chen, G. Lv, C. Pan, M. Song, C. Wu, D. Guo, X. Wang, B. Chen, Z. Gu, Biomed. Mater. 2 (2007) L1-4.
DOI URL PMID |
| [9] | K.E. Washington, R.N. Kularatne, V. Karmegam, M.C. Biewer, M.C. Stefan, Wires Nanomed Nanobi 9 (2017). |
| [10] |
M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Prog. Polym. Sci. 36 (2011) 981-1014.
DOI URL |
| [11] |
T. Kean, M. Thanou, Adv. Drug Deliver. Rev. 62 (2010) 3-11.
DOI URL |
| [12] |
R. Jayakumar, M. Prabaharan, S.V. Nair, S. Tokura, H. Tamura, N. Selvamurugan, Prog. Mater. Sci. 55 (2010) 675-709.
DOI URL |
| [13] |
K.Y. Lee, D.J. Mooney, Prog. Polym. Sci. 37 (2012) 106-126.
DOI URL PMID |
| [14] |
H.V. Saether, H.K. Holme, G. Maurstald, O. Smidsrod, B.T. Stokke, Carbohyd. Polym. 74 (2008) 813-821.
DOI URL |
| [15] |
G.Q. Huang, L.Y. Cheng, J.X. Xiao, X.N. Han, Colloid Polym. Sci. 293 (2015) 401-407.
DOI URL |
| [16] |
X. Lv, W. Zhang, Y. Liu, Y. Zhao, J. Zhang, M. Hou, Carbohydr. Polym. 198 (2018) 86-93.
DOI URL PMID |
| [17] |
X. P. Sun T, Q. Liu, et al., Eur. Polym. J. (2003).
URL PMID |
| [18] | S.P.C.-F. Fernanda R. de Abreu. |
| [19] |
L.Y. Chen, Y.M. Du, X.Q. Zeng, Carbohydr. Res. 338 (2003) 333-340.
DOI URL PMID |
| [20] |
M.E. Dowty, K.E. Knuth, B.K. Irons, J.R. Robinson, Pharm. Res. -Dordr. 9 (1992) 1113-1122.
DOI URL |
| [21] |
X. Kong, Carbohydr. Polym. 88 (2012) 336-341.
DOI URL |
| [22] |
Q. Song, Z. Zhang, J. Gao, C. Ding, J. Appl. Polym. Sci. 119 (2011) 3282-3285.
DOI URL |
| [23] |
K. Wang, L. Du, C. Zhang, Z. Lu, F. Lu, H. Zhao, J. Food Sci. Technol. 56 (2019) 5396-5404.
DOI URL PMID |
| [24] |
Q.P. Song, Z. Zhang, J.G. Gao, C.M. Ding, J. Appl. Polym. Sci. 119 (2011) 3282-3285.
DOI URL |
| [25] | A.A. Shoukry, W.M. Hosny, Cent. Eur. J. Chem. 10 (2012) 59-70. |
| [26] |
T. Baran, A. Mentes, H. Arslan, Int. J. Biol. Macromol. 72 (2015) 94-103.
DOI URL PMID |
| [27] |
L.H. Fan, X.R. Pan, Y. Zhou, L.Y. Chen, W.G. Xie, Z.H. Long, H. Zheng, J. Appl. Polym. Sci. 122 (2011) 2331-2337.
DOI URL |
| [28] |
C.S. Martins, D.L. Morgado, O.B.G. Assi, Macromol. Res. 24 (2016) 691-697.
DOI URL |
| [29] |
C. Maderuelo, A. Zarzuelo, J.M. Lanao, J. Control. Release 154 (2011) 2-19.
DOI URL PMID |
| [30] |
R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, Int. J. Pharm. 15 (1983) 25-35.
DOI URL |
| [31] |
R.S. Langer, N.A. Peppas, Biomaterials 2 (1981) 201-214.
DOI URL PMID |
| [1] | Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition [J]. J. Mater. Sci. Technol., 2021, 63(0): 236-245. |
| [2] | Mingli Lin, Huanhuan Liu, Jingjing Deng, Ran An, Minjuan Shen, Yanqiu Li, Xu Zhang. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembly [J]. J. Mater. Sci. Technol., 2019, 35(9): 1894-1905. |
| [3] | Zhong Haoxiang, Lu Jidian, He Aiqin, Sun Minghao, He Jiarong, Zhang Lingzhi. Carboxymethyl chitosan/poly(ethylene oxide) water soluble binder: Challenging application for 5 V LiNi0.5Mn1.5O4 cathode [J]. J. Mater. Sci. Technol., 2017, 33(8): 763-767. |
| [4] | Huang Qianqian, Liu Shunli, Li Kewen, Hussain Imtiaz, Yao Fang, Fu Guodong. Sodium Alginate/Carboxyl-Functionalized Graphene Composite Hydrogel Via Neodymium Ions Coordination [J]. J. Mater. Sci. Technol., 2017, 33(8): 821-826. |
| [5] | Pan Ting,Song Wenjing,Cao Xiaodong,Wang Yingjun. 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties [J]. J. Mater. Sci. Technol., 2016, 32(9): 889-900. |
| [6] | Eun Jung Kim, Jeong Hyun Yeum, Jin Hyun Choi. Effects of Polymeric Stabilizers on the Synthesis of Gold Nanoparticles [J]. J. Mater. Sci. Technol., 2014, 30(2): 107-111. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
