J. Mater. Sci. Technol. ›› 2020, Vol. 54: 58-68.DOI: 10.1016/j.jmst.2020.04.016
• Research Article • Previous Articles Next Articles
X.X. Zhanga, J.F. Zhanga, Z.Y. Liua, W.M. Ganb, M. Hofmannc, H. Andräd, B.L. Xiaoa,*(), Z.Y. Maa,*(
)
Received:
2019-11-25
Revised:
2019-12-23
Accepted:
2020-01-28
Published:
2020-10-01
Online:
2020-10-21
Contact:
B.L. Xiao,Z.Y. Ma
X.X. Zhang, J.F. Zhang, Z.Y. Liu, W.M. Gan, M. Hofmann, H. Andrä, B.L. Xiao, Z.Y. Ma. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction[J]. J. Mater. Sci. Technol., 2020, 54: 58-68.
Material name, heat treatment | Samples | Measured reflections of 2009Al | Scattering angle, 2θ |
---|---|---|---|
2009Al alloy, T4 | S1 | {311}, {222} | 89° |
{220} | 72° | ||
S2 | {200} | 45° | |
3 vol.% CNT/2009Al composite, T4 | S3 | {311}, {222} | 89° |
{220} | 72° | ||
S4 | {200} | 45° |
Table 1 In-situ neutron diffraction samples and the measured reflections.
Material name, heat treatment | Samples | Measured reflections of 2009Al | Scattering angle, 2θ |
---|---|---|---|
2009Al alloy, T4 | S1 | {311}, {222} | 89° |
{220} | 72° | ||
S2 | {200} | 45° | |
3 vol.% CNT/2009Al composite, T4 | S3 | {311}, {222} | 89° |
{220} | 72° | ||
S4 | {200} | 45° |
Fig. 2. In-situ neutron diffraction experiment: (a) setup of experiment, where an extensometer was bound on the sample using two black rubber bands; (b) a neutron diffraction pattern.
Fig. 3. RVEs used for simulation of 3 vol.% CNT/2009Al composites: (a) all CNTs are modeled by generally aligned fibers, named as Fiber RVE; (b) 1.5 vol.% CNTs are modeled by aligned fibers and 1.5 vol.% CNTs are modeled by spheres, named as Fiber-Sphere RVE.
Material | Parameters | Value |
---|---|---|
2009Al | Initial yield strength, ${{\sigma }_{0}}$ | 385.0 MPa |
Isotropic hardening modulus, H | 700.0 MPa | |
Young’s modulus | 72.4 GPa | |
Poisson’s ratio | 0.33 | |
CNT | Young’s modulus | 750.0 GPa |
Poisson’s ratio | 0.20 |
Table 2 Material parameters used for simulation in the present study.
Material | Parameters | Value |
---|---|---|
2009Al | Initial yield strength, ${{\sigma }_{0}}$ | 385.0 MPa |
Isotropic hardening modulus, H | 700.0 MPa | |
Young’s modulus | 72.4 GPa | |
Poisson’s ratio | 0.33 | |
CNT | Young’s modulus | 750.0 GPa |
Poisson’s ratio | 0.20 |
Fig. 7. Macroscopic stress vs. strain curves: (a) as-recorded curves during in-situ neutron diffraction; (b) average stress-strain curves from in-situ experiments (S1?S4), the stress?strain curves from ex-situ experiments (N1 and N2), and the simulated curves.
Fig. 8. Comparison of work-hardening rate during plastic deformation as a function of true strain between the 2009Al-T4 sample N1 and the 3 vol.% CNT/2009Al-T4 sample N2.
Fig. 9. Lattice strain vs. applied strain curves of the 2009Al alloy and the 3 vol.% CNT/2009Al composite. Error bars of the measured lattice strains are shown for all curves.
Fig. 10. Evolution of lattice strains as a function of applied stress in both the 2009Al matrix of the composite and the 2009Al alloy: (a) {311} lattice strains, (b) {220} lattice strain, (c) {111} lattice strain and (d) {200} lattice strain.
Fig. 11. Load transfer mechanism in the 3 vol.% CNT/2009Al composite: (a) average stress in CNTs; (b) stress increment of the composite during elastic deformation stage.
Fig. 13. Predicted Mises stress (MPa) fields at the 0.7 % applied strain: (a) in the matrix and (b) the CNTs of the Fiber RVE; (c) in the matrix and (d) the CNTs of the Fiber-Sphere RVE. The tension loading direction is along the Y-axis, i.e. the vertical direction.
Fig. 14. Evolutions of FWHM: (a) instrumental FWHM at different scattering angles measured using a standard Si powder; (b) FWHM vs. applied strain curves of different materials; FWHM vs. applied stress curves of (c) the composite and (d) the alloy.
[1] |
Z.Q. Tan, Z.Q. Li, G.L. Fan, W.H. Li, Q.L. Liu, W. Zhang, D. Zhang, Nanotechnology 22 (2011), 225603.
URL PMID |
[2] | D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han, S.H. Hong, Carbon 50 (2012) 2417-2423. |
[3] | Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 62 (2013) 35-42. |
[4] | A. Azarniya, A. Azarniya, S. Sovizi, H.R.M. Hosseini, T. Varol, A. Kawasaki, S. Ramakrishna, Prog. Mater. Sci. 90 (2017) 276-324. |
[5] | R. George, K.T. Kashyap, R. Raw, S. Yamdagni, Scr. Mater. 53 (2005) 1159-1163. |
[6] | B. Chen, S.F. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, Compos. Sci. Technol. 113 (2015) 1-8. |
[7] | W.W. Zhou, G. Yamamoto, Y. Fan, H. Kwon, T. Hashida, A. Kawasaki, Carbon 106 (2016) 37-47. |
[8] | S.E. Shin, D.H. Bae, Mater. Charact. 83 (2013) 170-177. |
[9] | S.H. Dong, J.Q. Zhou, D. Hui, Y. Wang, S. Zhang, Compos. Pt. A-Appl.Sci. Manuf. 68 (2015) 356-364. |
[10] | Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 50 (2012) 1843-1852. |
[11] | K.T. Kim, J. Eckert, S.B. Menzel, T. Gemming, S.H. Hong, Appl. Phys. Lett. 92 (2008), 121901. |
[12] | L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71 (2015) 93-168. |
[13] | L.J. Huang, L. Geng, A.B. Li, F.Y. Yang, H.X. Peng, Scr. Mater. 60 (2009) 996-999. |
[14] |
I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Science 362 (2018) 547-553.
URL PMID |
[15] | P.J. Withers, A.P. Clarke, Acta Mater. 46 (1998) 6585-6598. |
[16] | W.D. Armstrong, T. Lorentzen, P. Brondsted, P.H. Larsen, Acta Mater. 46 (1998) 3455-3466. |
[17] | M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, D.C. Dunand, Acta Mater. 55 (2007) 1999-2011. |
[18] | N. Jia, R.L. Peng, D.W. Brown, B. Clausen, Y.D. Wang, Metall. Mater. Trans. A 39 (2008) 3134-3140. |
[19] | T.E. Wilkes, B.J. Harder, J.D. Almer, K.T. Faber, Acta Mater. 57 (2009) 6234-6242. |
[20] | M.L. Young, R. Rao, J.D. Almer, D.R. Haeffner, J.A. Lewis, D.C. Dunand, Acta Mater. 57 (2009) 2362-2375. |
[21] |
S. Harjo, N. Tsuchida, J. Abe, W. Gong, Sci. Rep. 7 (2017) 15149.
DOI URL PMID |
[22] | S. Suarez, E. Ramos-Moore, F. Mucklich, Carbon 51 (2013) 404-409. |
[23] | F. Mokdad, D.L. Chen, Z.Y. Liu, B.L. Xiao, D.R. Ni, Z.Y. Ma, Carbon 104 (2016) 64-77. |
[24] | S.C. Tjong, Mater. Sci. Eng. Res. 74 (2013) 281-350. |
[25] | A.Y. Cao, C.L. Xu, J. Liang, D.H. Wu, B.Q. Wei, Chem. Phys. Lett. 344 (2001) 13-17. |
[26] | K. Zhao, Z.Y. Liu, B.L. Xiao, D.R. Ni, Z.Y. Ma, Acta Metall. Sin. (Engl. Lett.) 31 (2017) 134-142. |
[27] | K. Zhao, Z. Liu, B. Xiao, Z. Ma, J. Mater. Sci Technol.. 33 (2017) 1004-1008. |
[28] | S. Bargmann, B. Klusemann, J. Markmann, J.E. Schnabel, K. Schneider, C. Soyarslan, J. Wilmers, Prog. Mater. Sci. 96 (2018) 322-384. |
[29] | B. Laurence, Université catholique de Louvain, 2011. |
[30] | M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381 (1996) 678-680. |
[31] | E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277 (1997) 1971-1975. |
[32] |
M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287 (2000) 637-640.
DOI URL PMID |
[33] | A. Ghavamian, M. Rahmandoust, A. Öchsner, Comput. Mater. Sci. 62 (2012) 110-116. |
[34] |
Y.I. Jhon, C. Kim, M. Seo, W.J. Cho, S. Lee, Y.M. Jhon, Sci. Rep. 6 (2016) 20324.
DOI URL PMID |
[35] | V.N. Popov, V.E. Van Doren, Phys. Rev. B 61 (2000) 3078-3084. |
[36] | T. Tokunaga, K. Kaneko, Z. Horita, Mater. Sci. Eng. A 490 (2008) 300-304. |
[37] | J.B. Bunge, London, 1982. |
[38] | H. Wang, B. Clausen, L. Capolungo, I.J. Beyerlein, J. Wang, C.N. Tome, Int. J. Plast. 79 (2016) 275-292. |
[39] | O. Muransky, P. Sittner, J. Zrnik, E.C. Oliver, Metall. Mater. Trans. A 39A (2008) 3097-3104. |
[40] | S.R. Agnew, R.P. Mulay, F.J. Polesak, C.A. Calhoun, J.J. Bhattacharyya, B. Clausen, Acta Mater. 61 (2013) 3769-3780. |
[41] | Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 69 (2014) 264-274. |
[42] | J. Coër, P.Y. Manach, H. Laurent, M.C. Oliveira, L.F. Menezes, Mech. Res. Commun. 48 (2013) 1-7. |
[43] |
A. Yilmaz, Sci. Technol. Adv. Mater. 12 (2011), 063001.
DOI URL PMID |
[44] | M. Zhang, R. Li, J. Ding, H. Chen, J.S. Park, J. Almer, Y.D. Wang, Mater. Res. Lett. 6 (2018) 662-667. |
[45] | X. Feng, G. Fischer, R. Zielke, B. Svendsen, W. Tillmann, Mater. Sci. Eng. A 539 (2012) 205-210. |
[46] | C.Y. Yu, P.W. Kao, C.P. Chang, Acta Mater. 53 (2005) 4019-4028. |
[47] | B. Clausen, T. Lorentzen, T. Leffers, Acta Mater. 46 (1998) 3087-3098. |
[48] | M.R. Daymond, M.A.M. Bourke, R.B. VonDreele, B. Clausen, T. Lorentzen, J. Appl. Phys. 82 (1997) 1554-1562. |
[49] |
G. Song, Z. Sun, L. Li, B. Clausen, S.Y. Zhang, Y. Gao, P.K. Liaw, Sci. Rep. 7 (2017) 45965.
URL PMID |
[50] |
B. Clausen, T. Lorentzen, M.A.M. Bourke, M.R. Daymond, Mater. Sci. Eng. A 259 (1999) 17-24.
DOI URL |
[51] |
S. Van Petegem, J. Wagner, T. Panzner, M.V. Upadhyay, T.T.T. Trang, H. Van Swygenhoven, Acta Mater. 105 (2016) 404-416.
DOI URL |
[52] |
R. Fernandez, G. Bruno, G. Gonzalez-Doncel, Mater. Sci. Eng. A 403 (2005) 260-268.
DOI URL |
[53] |
S. Roy, J. Gibmeier, V. Kostov, K.A. Weidenmann, A. Nagel, A. Wanner, Acta Mater. 59 (2011) 1424-1435.
DOI URL |
[54] |
V.C. Nardone, K.M. Prewo, Scr. Metall. 20 (1986) 43-48.
DOI URL |
[55] |
B. Chen, J. Shen, X. Ye, L. Jia, S. Li, J. Umeda, M. Takahashi, K. Kondoh, Acta Mater. 140 (2017) 317-325.
DOI URL |
[56] | H. Conrad, S. Feuerstein, L. Rice, Mater. Sci. Eng. 2 (1967) 157-168. |
[57] |
T. Narutani, J. Takamura, Acta Metall. Mater. 39 (1991) 2037-2049.
DOI URL |
[58] |
K.H. Chia, K. Jung, H. Conrad, Mater. Sci. Eng. A 409 (2005) 32-38.
DOI URL |
[59] |
Z.C. Cordero, B.E. Knight, C.A. Schuh, Int. Mater. Rev. 61 (2016) 495-512.
DOI URL |
[60] |
A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, M.J. Alava, Sci. Rep. 8 (2018) 6914.
DOI URL PMID |
[61] |
Z.Y. Zhong, H.G. Brokmeier, W.M. Gan, E. Maawad, B. Schwebke, N. Schell, Mater. Charact. 108 (2015) 124-131.
DOI URL |
[62] | G.I. Taylor, Proc. Royal Soc. Lon. Ser. A 145 (1934) 362-387. |
[1] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[2] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[3] | Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review [J]. J. Mater. Sci. Technol., 2020, 46(0): 74-87. |
[4] | Feng Zhang, Jia Sun, Yonggang Zheng, Peng-Xiang Hou, Chang Liu, Min Cheng, Xin Li, Hui-Ming Cheng, Zhen Chen. The importance of H2 in the controlled growth of semiconducting single-wall carbon nanotubes [J]. J. Mater. Sci. Technol., 2020, 54(0): 105-111. |
[5] | Minghe Zhang, Haiyang Chen, Youkang Wang, Shengjie Wang, Runguang Li, Shilei Li, Yan-Dong Wang. Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel [J]. J. Mater. Sci. Technol., 2019, 35(8): 1779-1786. |
[6] | Jennifer A. Rudd, Cathren E. Gowenlock, Virginia Gomez, Ewa Kazimierska, Abdullah M. Al-Enizi, Enrico Andreoli, Andrew R. Barron. Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2019, 35(6): 1121-1127. |
[7] | Yang Hu, Runjian Jiang, Jingbao Zhang, Chengsong Zhang, Guodong Cui. Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(5): 886-890. |
[8] | Pawel Mierczynski, Sergey V. Dubkov, Sergey V. Bulyarskii, Alexander A. Pavlov, Sergey N. Skorik, Alexey Yu Trifonov, Agnieszka Mierczynska, Eugene P. Kitsyuk, Sergey A. Gavrilov, Tomasz P. Maniecki, Dmitry G. Gromov. Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method [J]. J. Mater. Sci. Technol., 2018, 34(3): 472-480. |
[9] | Zhao Ke, Liu Zhenyu, Xiao Bolyu, Ma Zongyi. Friction stir welding of carbon nanotubes reinforced Al-Cu-Mg alloy composite plates [J]. J. Mater. Sci. Technol., 2017, 33(9): 1004-1008. |
[10] | Yuan Qiuhong, Zeng Xiaoshu, Wang Yanchun, Luo Lan, Ding Yan, Li Dejiang, Liu Yong. Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs [J]. J. Mater. Sci. Technol., 2017, 33(5): 452-460. |
[11] | Hu Dan, Zhu Wei, Peng Yuncheng, Shen Shengfei, Deng Yuan. Flexible carbon nanotube-enriched silver electrode films with high electrical conductivity and reliability prepared by facile screen printing [J]. J. Mater. Sci. Technol., 2017, 33(10): 1113-1119. |
[12] | Li Pengbo, Li Tiehu, Yan Hongxia. Mechanical, tribological and heat resistant properties of fluorinated multi-walled carbon nanotube/bismaleimide/cyanate resin nanocomposites [J]. J. Mater. Sci. Technol., 2017, 33(10): 1181-1186. |
[13] | Cheng Youliang, Xia Bingbing, Fang Changqing, Yang Lu. Structure, mechanical and thermal properties of BMI/E-44/CNTs ternary composites via amination method [J]. J. Mater. Sci. Technol., 2017, 33(10): 1187-1194. |
[14] | Feng Lei,Li Ke-Zhi,Lu Jin-Hua,Qi Le-Hua. Effect of Growth Temperature on Carbon Nanotube Grafting Morphology and Mechanical Behavior of Carbon Fibers and Carbon/Carbon Composites [J]. J. Mater. Sci. Technol., 2017, 33(1): 65-70. |
[15] | Zahra Amirsardari, Rouhollah Mehdinavaz-Aghdam, Masoud Salavati-Niasari, Mohammad Reza Jahannama. Influence of ZrB2 Nanoparticles on the Mechanical and Thermal Behaviors of Carbon Nanotube Reinforced Resol Composite [J]. J. Mater. Sci. Technol., 2016, 32(7): 611-616. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||