J. Mater. Sci. Technol. ›› 2020, Vol. 42: 190-202.DOI: 10.1016/j.jmst.2019.09.034
Special Issue: High Entropy Alloys 2018-2020
• Orginal Article • Previous Articles Next Articles
Received:
2019-08-26
Revised:
2019-09-24
Accepted:
2019-09-26
Published:
2020-04-01
Online:
2020-04-16
Contact:
Kim W.J.
H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy[J]. J. Mater. Sci. Technol., 2020, 42: 190-202.
Fig. 2. True stress-true strain curves of the (a) ANN1473, (b) ANN973 and (c) as-HRDSRed samples tested in the temperature range of 298-1173 K at a given strain rate of 10-3 s-1.
Fig. 4. Plots of true stress-true strain curves of the (a) ANN1473, (b) ANN973 and (c) the as-HRDSRed samples at 973, 1073 and 1173 K at various strain rates.
Fig. 5. Plots of log strain rate vs. log σ/G for (a) the ANN1473, (b) ANN973 and (c) as-HRDSRed samples. (d) The shear modulus G measured as a function of temperature. The solid lines in (a)-(c) represent the curve fitting by Eq. (11). The dashed lines in (a)-(c) represent the exponential curve fitting [18] used for the measurement of m values.
Fig. 6. (a) Plot of m measured from the curves for the as-HRDSRed, ANN973 and ANN1473 samples in Fig. 5(a)-(c). (b) The tensile elongations of the as-HRDSRed, ANN973 and ANN1473 samples as a function of strain rate at different temperatures.
Fig. 7. Plots of log $\dot{ε}$ - log sinh?(α$\frac{σ}{G}$) and log sinh?(α$\frac{σ}{G}$) - 1/T for the (a, b) ANN1473, (c, d) ANN973 and (e, f) as-HRDSRed samples.
Fig. 8. (a) Plots of log Z vs. log sinh?(ασ/G), where the α and Qc values determined for each material are used (b) Plots of log Z vs. log sinh?(α$\frac{σ}{G}$), where averages of the α and Qc values of the three materials are used. (c) Plots of log Z vs. log σ/G, where the avearge of the Qc values of the three materials is used. (d) Plots of m values measured from the fitting curves shown in (c), presented as a function of Z.
Fig. 10. EBSD IPF maps of (a) the as-HRDSRed samples heated and held (for 20 min) at (a) 973, (b) 1073 and (c) 1173 K and (d) the ANN973 sample heated and held (for 20 min) at 1173 K.
T(K) | Grain size (μm) | Grain size (μm) at 973K | Grain size (μm) at 1073K | Grain size (μm) at 1173K |
---|---|---|---|---|
As-HRDSRed | <0.5 | 6.8±0.53 | 8.6±0.36 | 13.5±1.80 |
ANN973 | 8.1±0.52 | 8.5±0.35 | 9.7±1.06 | 14.6±1.57 |
ANN1473 | 590.2±9.3 | - | - |
Table 1 Grain sizes measured by EBSD after sample heating and holding (for 20 min) at various temperatures.
T(K) | Grain size (μm) | Grain size (μm) at 973K | Grain size (μm) at 1073K | Grain size (μm) at 1173K |
---|---|---|---|---|
As-HRDSRed | <0.5 | 6.8±0.53 | 8.6±0.36 | 13.5±1.80 |
ANN973 | 8.1±0.52 | 8.5±0.35 | 9.7±1.06 | 14.6±1.57 |
ANN1473 | 590.2±9.3 | - | - |
Fig. 11. IPF and GB maps (on the gauge regions of the tensile specimens) of the (a) ANN1473, (b) ANN973 and (c) as-HRDSRed samples after tensile elongation tests at 1173 K - 10-3 s-1. The IPF and GB maps of (d) the as-HRDSRed sample after the tensile elongation test at 1073 K - 10-3 s-1.
Fig. 12. XRD spectra for the ANN973 sample measured on the grip and gauge regions after the tensile elongation tests at different temperatures at a given strain rate of 10-3 s-1.
Fig. 13. Fractured surfaces of the tensile samples of the (a) ANN1473 (b) ANN973 and (c) as-HRDSRed samples tested at RT, 673, 973 and 1173 K at a given strain rate of 10-3 s-1.
Fig. 15. Calculated twinning stress as a function of grain size (solid curve) and the data of the maximum flow stresses upon necking at different temperatures below 773 K.
|
[1] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[2] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[3] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[4] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[5] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[6] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[7] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
[8] | A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao. Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 1-6. |
[9] | Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel [J]. J. Mater. Sci. Technol., 2020, 45(0): 35-43. |
[10] | G.W. Hu, L.C. Zeng, H. Du, X.W. Liu, Y. Wu, P. Gong, Z.T. Fan, Q. Hu, E.P. George. Tailoring grain growth and solid solution strengthening of single-phase CrCoNi medium-entropy alloys by solute selection [J]. J. Mater. Sci. Technol., 2020, 54(0): 196-205. |
[11] | Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying [J]. J. Mater. Sci. Technol., 2020, 43(0): 40-43. |
[12] | Kim Jeong Tae, Hong Sung Hwan, Park Jin Man, Jürgen Eckert, Kim Ki Buem. New para-magnetic (CoFeNi)50(CrMo)50-x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties [J]. J. Mater. Sci. Technol., 2020, 43(0): 135-143. |
[13] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[14] | Varma S.K., Sanchez Francelia, Moncayo Sabastian, Ramana C.V.. Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400 °C [J]. J. Mater. Sci. Technol., 2020, 38(0): 189-196. |
[15] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||