J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (10): 2187-2193.DOI: 10.1016/j.jmst.2019.05.038
• Orginal Article • Previous Articles Next Articles
Zize Liuab, Tianming Zhaoab, Hongye Guanab, Tianyan Zhongab, Haoxuan Heab, Lili Xinga*(), Xinyu Xueab*(
)
Received:
2019-01-21
Revised:
2019-03-09
Accepted:
2019-04-03
Online:
2019-10-05
Published:
2019-08-28
Contact:
Xing Lili,Xue Xinyu
Zize Liu, Tianming Zhao, Hongye Guan, Tianyan Zhong, Haoxuan He, Lili Xing, Xinyu Xue. A self-powered temperature-sensitive electronic-skin based on tribotronic effect of PDMS/PANI nanostructures[J]. J. Mater. Sci. Technol., 2019, 35(10): 2187-2193.
Fig. 2. SEM images of the e-skin. (a) SEM image of one temperature sensing unit. (b) The PANI layer on the temperature sensing unit. (c) The enlargement of the connection section between unit and the flexible electrode. (d-f) The gap between PANI and PDMS. (g) SEM images of flexible electrode (h) and terminal electrode. (i, j) SEM images of the border between PANI and PDMS before and after bending for 20,000 times under 90°. (k) The high magnification SEM image of PDMS before ICP treatment. (l) The high magnification SEM image of PDMS after ICP treatment.
Fig. 3. The temperature sensing performance of self-powered e-skin (one unit). (a) The outputting triboelectric current of e-skin against different temperature. (b) The outputting triboelectric current in the heating and cooling process. (c-f) The enlarged views of the outputting current at 38.6 °C, 43.4 °C, 37.8 °C and 33.4 °C. (g, h) The outputting current and response of outputting triboelectric current in the heating and cooling process.
Fig. 4. (a) The outputting current under different bending angles at 33.1 °C, 35.2 °C, 39.3 °C and 43.0 °C. (b) The response of the e-skin under 14°, 17° and 20°. (c) Response and the recovery of the temperature sensing unit after heating (42.0 °C) and cooling (33.4 °C). (d) Stability of the e-skin. (e) The outputting triboelectric current of the e-skin under different frequencies. (f) The temperature resolution of the temperature-sensitive e-skin.
Fig. 5. Control experimental results and the working mechanism. (a, b) The outputting triboelectric current of the device (Cu/PDMS). (c) The triboelectric process between PANI and PDMS. (d) The temperature-sensitive mechanism of the e-skin.
|
[1] | Xu Han, Jianhua Wu, Xianhui Zhang, Junyou Shi, Jiaxin Wei, Yang Yang, Bo Wu, Yonghui Feng. Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61(0): 46-62. |
[2] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[3] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[4] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[5] | Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds [J]. J. Mater. Sci. Technol., 2020, 46(0): 237-247. |
[6] | Shahzad Fateh Ali, Jitang Fan. Elastic-viscoplastic constitutive model for capturing the mechanical response of polymer composite at various strain rates [J]. J. Mater. Sci. Technol., 2020, 57(0): 12-17. |
[7] | Seung Man Lim, Kyunglee Kang, Hongje Jang, Jung Tae Park. Environmental friendly synthesis of hierarchical mesoporous platinum nanoparticles templated by fucoidan biopolymer for enhanced hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2020, 46(0): 185-190. |
[8] | C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films [J]. J. Mater. Sci. Technol., 2020, 37(0): 85-95. |
[9] | Zhao-Qi Zhang, Rong-Chang Zeng, Cun-Guo Lin, Li Wang, Xiao-Bo Chen, Dong-Chu Chen. Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 41(0): 43-55. |
[10] | S.C. Han, L.H. Wu, C.Y. Jiang, N. Li, C.L. Jia, P. Xue, H. Zhang, H.B. Zhao, D.R. Ni, B.L. Xiao, Z.Y. Ma. Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment [J]. J. Mater. Sci. Technol., 2020, 50(0): 103-114. |
[11] | Xiaoling Liu, Xiaowei Yin, Wenyan Duan, Fang Ye, Xinliang Li. Electromagnetic interference shielding properties of polymer derived SiC-Si3N4 composite ceramics [J]. J. Mater. Sci. Technol., 2019, 35(12): 2832-2839. |
[12] | Ahmed Elmarakbi, Panagiotis Karagiannidis, Alessandra Ciappa, Franco Innocente, Francesco Galise, Brunetto Martorana, Francesco Bertocchi, Francesco Cristiano, Elvira Villaro ábalos, Julio Gómez. 3-Phase hierarchical graphene-based epoxy nanocomposite laminates for automotive applications [J]. J. Mater. Sci. Technol., 2019, 35(10): 2169-2177. |
[13] | Shanshan Chen, Peng Wan, Bingchun Zhang, Deniz Eren Eris?en, Hui Yang, Ke Yang. A novel polymer critical re-melting treatment for improving corrosion resistance of magnesium alloy stent [J]. J. Mater. Sci. Technol., 2019, 35(1): 19-22. |
[14] | Yumei Luo, Lixian Sun, Fen Xu, Siyue Wei, Qingyong Wang, Hongliang Peng, Chonglin Chen. Cobalt(II) coordination polymers as anodes for lithium-ion batteries with enhanced capacity and cycling stability [J]. J. Mater. Sci. Technol., 2018, 34(8): 1412-1418. |
[15] | Qi Wang, Guodong Wen, Lingzhi Liu, Bo Zhu, Dangsheng Su. Promising commercial reinforcement to the nanodiamond/epoxy composite by grafting ammonium ions [J]. J. Mater. Sci. Technol., 2018, 34(6): 990-994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||