J. Mater. Sci. Technol. ›› 2014, Vol. 30 ›› Issue (7): 631-638.DOI: 10.1016/j.jmst.2014.06.007
• research-article • Next Articles
Zhou Yanchun*, Xiang Huimin, Feng Zhihai
Received:2014-04-10
Online:2014-07-20
Published:2014-07-30
Contact:
Corresponding author. Prof., Ph.D.; Tel.: +86 10 68382478; Fax: +86 10 68383237
Zhou Yanchun, Xiang Huimin, Feng Zhihai. Theoretical Investigation on Mechanical and Thermal Properties of a Promising Thermal Barrier Material: Yb3Al5O12[J]. J. Mater. Sci. Technol., 2014, 30(7): 631-638.
| [1] D.R. Clarke,C.G. Levi,Annu. Rev. Mater. Res.,33 (2003), pp.383–417 [2] D.R. Clarke,S.R. Phillpot,Mater. Today,8 (2005), pp.22–29 [3] A.J. Slifka,B.J. Filla,J.M. Phelps,G. Bancke,C.C. Berndt,J. Therm,Spray Technol.,7 (1998), pp.43–46 [4] R.A. Miller,J.L. Smialek,R.G. Garlick,,in: A.H. Heuer,L.W. Hobbs (Eds.),Advances in Ceramics,Science and Technology of Zirconia,Vol. 3,American Ceramic Society,Columbus,OH (1981), pp.241–251 [5] P. Ramaswamy,S. Seetharamu,K.B.R. Varma,K.J. Rao,J. Therm,Spray Technol.,7 (1998), pp.497–504 [6] Y. Harada,T. Suzuki,K. Hirano,N. Nakagawa,Y. Waku,J. Eur. Ceram. Soc.,25 (2005), pp.1275–1283 [7] P. Djemia,F. Tétard,K. Bouamama,E. Charron,D. Tétard,Y. Rabinovitch,J. Eur. Ceram. Soc.,27 (2007), pp.4719–4725 [8] G.S. Corman,Ceram. Eng. Sci. Proc.,12 (1991), pp.1745–1766 [9] G.S. Corman,J. Mater. Sci. Lett.,12 (1993), pp.379–382 [10] X. Zhan,Z. Li,B. Liu,J.Y. Wang,Y.C. Zhou,Z.J. Hu,J. Am. Ceram. Soc.,95 (2012), pp.1429–1434 [11] H. Klemm,J. Am. Ceram. Soc.,93 (2010), pp.1501–1522 [12] Y. Wu,J. Li,Y. Pan,Q. Liu,J. Guo,Ceram. Int.,35 (2009), pp.25–27 [13] V.I. Chani,A. Yoshikawa,H. Machida,T. Fukuda,Mater. Sci. Eng. B,75 (2003), pp.53–60 [14] X. Xu,Z. Zhao,J. Xu,P. Deng,J. Cryst. Growth,257 (2003), pp.272–275 [15] D.R. Clarke,Surf. Coat. Technol.,163–164 (2003), pp.67–74 [16] B. Liu,J.Y. Wang,F.Z. Li,Y.C. Zhou,Acta Mater.,58 (2010), pp.4369–4377 [17] G.A. Slack,J. Phys. Chem. Solids,34 (1973), pp.321–335 [18] M.D. Segall,P.J.D. Lindan,M.J. Probert,C.J. Pickard,P.J. Hasnip,S.J. Clark,M.C. Payne,J. Phys. Condens. Matter,14 (2002), pp.2717–2743 [19] J.S. Lin,A. Qteish,M.C. Payne,V. Heine,Phys. Rev. B,47 (1993), pp.4174–4180 [20] D.M. Ceperley,B.J. Alder,Phys. Rev. Lett.,45 (1980), pp.566–569 [21] J. Feng,B. Xiao,C.L. Wan,Z.X. Qu,Z.C. Huang,J.C. Chen,R. Zhou,W. Pan,Acta Mater.,59 (2011), pp.1742–1760 [22] H.J. Monkhorst,J.D. Pack,Phys. Rev. B,13 (1976), pp.5188–5192 [23] B.G. Pfrommer,M. C?té,S.G. Louie,M.L. Cohen,J. Comput. Phys.,131 (1997), pp.233–240 [24] V. Milman,M.C. Warren,J. Phys. Condens. Matter,13 (2001), pp.241–245 [25] W. VoigtLehrbuch der Kristallphysik,Leipzig,Taubner (1928) [26] A. Reuss,Z. Angew,Math. Mech.,9 (1929), pp.49–58 [27] R. Hill,Proc. Phys. Soc. A,65 (1952), pp.349–354 [28] D.J. GreenAn Introduction to the Mechanical Properties of Ceramics,Cambridge University Press,Cambridge (1993) [29] B.D. Sanditov,S.B. Tsydypov,D.S. Sanditov,Acoust. Phys.,53 (2007), pp.594–597 [30] H.M. Xiang,F.Z. Hai,Y.C. Zhou,J. Eur. Ceram. Soc.,34 (2014), pp.1809–1818 [31] Y.C. Zhou,B. Liu,J. Eur. Ceram. Soc.,33 (2013), pp.2817–2821 [32] O.L. Anderson,J. Phys. Chem. Solids,24 (1963), pp.909–917 [33] J.C. Phillips,J.A.V. Vechten,Phys. Rev. Lett.,22 (1969), pp.705–708 [34] J.A.V. Vechten,Phys. Rev.,182 (1969), pp.891–905 [35] B.F. Levine,J. Chem. Phys.,59 (1973), pp.1463–1486 [36] D. Xue,S. Zhang,J. Phys. Condens. Matter,8 (1996), pp.1949–1956 [37] D. Liu,S. Zhang,Z. Wu,Inorg. Chem.,42 (2003), pp.2465–2469 [38] S. Zhang,H. Li,H. Li,S. Zhou,X. Cao,J. Phys. Chem. B,111 (2007), pp.1304–1309 [39] S. Zhang,H. Li,L. Li,S. Zhou,Appl. Phys. Lett.,91 (2007), p.251905 [40] S. Zhang,H. Li,S. Zhou,T. Pan,Jpn. J. Appl. Phys.,45 (2006), pp.8801–8804 [41] L. Dobrzycki,E. Bulska,D.A. Pawlak,Z. Frukacz,K. Wozniak,Inorg. Chem.,43 (2004), pp.7656–7664 [42] L. Pauling,J. Am. Chem. Soc.,51 (1929), pp.1010–1026 [43] M. Born,K. HuangDynamical Theory of Crystal Lattices,Oxford University Press,London (1954) [44] W.R.L. Lambrecht,B. Segall,M. Methfessel,M.V. Schilfgaarde,Phys. Rev. B,44 (1991), pp.3685–3694 [45] Z.G. Wu,X.J. Chen,V.V. Struzhkin,R.E. Cohen,Phys. Rev. B,71 (2005), p.214103 [46] Z.M. Sun,Y.C. Zhou,Phys. Rev. B,60 (1999), pp.1441–1443 [47] X.Q. Chen,H.Y. Niu,D.Z. Li,Y.Y. Li,Intermetallics,19 (2011), pp.1275–1281 [48] F. Gao,J. He,E. Wu,S. Liu,D. Yu,D. Li,S. Zhang,Y. Tian,Phys. Rev. Lett.,91 (2003), p.015502 [49] J.F. NyePhysical Properties of Crystals: Their Representation by Tensors and Matrices,Oxford Science Publications,Oxford (1985) [50] C. Zener,Phys. Rev.,71 (1947), pp.846–851 [51] R.P. Ingel,D. Lewis III,J. Am. Ceram. Soc.,71 (1988), pp.265–271 [52] M.A. Blanco,E. Francisco,V. Lua?a,Comput. Phys. Commun.,158 (2004), pp.57–72 [53] R. Car,M. Parrinello,Phys. Rev. Lett.,55 (1985), pp.2471–2474 [54] R.D. Shannon,C.T. Prewitt,Acta Crystallogr. B,25 (1969), pp.925–946 [55] P. Wu,A.D. Pelton,J. Alloy. Compd.,179 (1992), pp.259–287 [56] B. Liu,J.Y. Wang,Y.C. Zhou,T. Liao,F.Z. Li,Acta Mater.,55 (2007), pp.2949–2957 |
| [1] | Chavez Juan J.Gomez, Ravisankar Naraparaju, Peter Mechnich, Klemens Kelm, Uwe Schulz, C.V. Ramana. Effects of yttria content on the CMAS infiltration resistance of yttria stabilized thermal barrier coatings system [J]. J. Mater. Sci. Technol., 2020, 43(0): 74-83. |
| [2] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
| [3] | Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials [J]. J. Mater. Sci. Technol., 2019, 35(5): 833-851. |
| [4] | Guangrong Li, Guanjun Yang. Understanding of degradation-resistant behavior of nanostructured thermal barrier coatings with bimodal structure [J]. J. Mater. Sci. Technol., 2019, 35(3): 231-238. |
| [5] | Chuntang Yu, He Liu, Chengyang Jiang, Zebin Bao, Shenglong Zhu, Fuhui Wang. Modification of NiCoCrAlY with Pt: Part II. Application in TBC with pure metastable tetragonal (t′) phase YSZ and thermal cycling behavior [J]. J. Mater. Sci. Technol., 2019, 35(3): 350-359. |
| [6] | Yiyou Wu, Hua Luo, Canying Cai, Yanguo Wang, Yichun Zhou, Li Yang, Guangwen Zhou. Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings [J]. J. Mater. Sci. Technol., 2019, 35(3): 440-447. |
| [7] | Qiaomu Liu, Shunzhou Huang, Aijie He. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35(12): 2814-2823. |
| [8] | Wei-Wei Zhang, Guang-Rong Li, Qiang Zhang, Guan-Jun Yang, Guo-Wang Zhang, Hong-Min Mu. Bimodal TBCs with low thermal conductivity deposited by a powder-suspension co-spray process [J]. J. Mater. Sci. Technol., 2018, 34(8): 1293-1304. |
| [9] | Zhao Xiaoxiang,Guo Lei,Wang Caimei,Zhang Yu,Ye Fuxing. Effect of Phase Structure Evolution on Thermal Expansion and Toughness of (Nd1-xScx)2Zr2O7 (x = 0, 0.025, 0.05, 0.075, 0.1) Ceramics [J]. J. Mater. Sci. Technol., 2017, 33(2): 192-197. |
| [10] | W.Z. Tang, L. Yang, W. Zhu, Y.C. Zhou, J.W. Guo, C. Lu. Numerical Simulation of Temperature Distribution and Thermal-Stress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid-Solid Coupling Method [J]. J. Mater. Sci. Technol., 2016, 32(5): 452-458. |
| [11] | Lei Guo, Mingzhu Li, Yu Zhang, Fuxing Ye. Improved Toughness and Thermal Expansion of Non-stoichiometry Gd2 - xZr2 + xO7 + x/2 Ceramics for Thermal Barrier Coating Application [J]. J. Mater. Sci. Technol., 2016, 32(1): 28-33. |
| [12] | Bin Zhang, Li Liu, Tianshu Li, Ying Li, Mingkai Lei, Fuhui Wang. Adsorption and Diffusion Behavior of Cl- on Sputtering Fe-20Cr Nanocrystalline Thin Film in Acid Solution (pH = 2) [J]. J. Mater. Sci. Technol., 2015, 31(12): 1198-1206. |
| [13] | Xiaofeng Zhang, Kesong Zhou, Wei Xu, Jinbing Song, Chunming Deng, Min Liu. Reaction Mechanism and Thermal Insulation Property of Al-deposited 7YSZ Thermal Barrier Coating [J]. J. Mater. Sci. Technol., 2015, 31(10): 1006-1010. |
| [14] | Xizhong Wang, Lei Guo, Hongbo Guo, Guohui Ma1, Shengkai Gong. Effects of Pressure during Preparation on the Grain Orientation of Ruddlesden–Popper Structured BaLa2Ti3O10 Ceramic [J]. J. Mater. Sci. Technol., 2014, 30(5): 455-458. |
| [15] | L. Yang, Q.X. Liu, Y.C. Zhou, W.G. Mao, C. Lu. Finite Element Simulation on Thermal Fatigue of a Turbine Blade with Thermal Barrier Coatings [J]. J. Mater. Sci. Technol., 2014, 30(4): 371-380. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
