J. Mater. Sci. Technol. ›› 2025, Vol. 232: 239-245.DOI: 10.1016/j.jmst.2024.12.080
• Research Article • Previous Articles Next Articles
Yaochen Yu1, Jiahui Fan1, Yuefeng Lei, Haiyang Niu*
Received:2024-11-25
Revised:2024-12-06
Accepted:2024-12-28
Published:2025-10-10
Online:2025-03-04
Contact:
* E-mail address: haiyang.niu@nwpu.edu.cn (H. Niu).
About author:1 These authors contributed equally to this work.
Yaochen Yu, Jiahui Fan, Yuefeng Lei, Haiyang Niu. Structure exploration of gallium based on machine-learning potential[J]. J. Mater. Sci. Technol., 2025, 232: 239-245.
| [1] X. Wang, J. Liu, Micromachines 7 (2016) 206. [2] T. Daeneke, K. Khoshmanesh, N. Mahmood, I.A.De Castro, D.Esrafilzadeh, S. Barrow, M. Dickey, K. Kalantar-Zadeh, Chem. Soc. Rev. 47(2018) 4073-4111. [3] Y. Lin, J. Genzer, M.D. Dickey, Adv. Sci. 7(2020) 2000192. [4] Y. Ding, M. Zeng, L. Fu, Matter 3 (2020) 1477-1506. [5] M. Fu, Y. Shen, H. Zhou, X. Liu, W. Chen, X. Ma, J. Mater. Sci.Technol. 142(2023) 22-33. [6] L. Bosio, J. Chem. Phys. 68(1978) 1221-1223. [7] V. Heine, J.Phys. C 1 (1968) 222-231. [8] D. Fischer, B. Andriyevsky, J.C. Schon, Mater. Res. Express 6 (2019) 116401. [9] L. Bosio, A. Defrain, H. Curien, A. Rimsky, Acta Crystallogr. Sect. B 25 (1969) 995-995. [10] L. Bosio, C. Windsor, Phys. Rev. Lett. 35(1975) 1652-1655. [11] R. Heyding, W. Keeney, S. Segel, J. Phys. Chem. Solids 34 (1973) 133-136. [12] L. Comez, A. Di Cicco, J.P. Itié, A. Polian, Phys. Rev. B 65 (2002) 014114. [13] H. Niu, L. Bonati, P.M. Piaggi, M. Parrinello, Nat. Commun. 11(2020) 2654. [14] H. Curien, A. Rimsky, A. Defrain, Bull. Minéral. 84 (3) (1961) 260-264. [15] C. Tien, C. Wur, K. Lin, J. Hwang, E. Charnaya, Y.A. Kumzerov, Phys. Rev. B 54 (1996) 11880-11882. [16] E. Charnaya, C. Tien, K. Lin, Y.A. Kumzerov, J. Phys. Condens. Matter 10 (1998) 7273-7282. [17] I. Sorina, E. Charnaya, L. Smirnov, Y.A. Kumzerov, C. Tien, Phys. Solid State 40 (1998) 1407-1408. [18] D. Teske, J.E. Drumheller, J. Phys.: Condens. Matter 11 (1999) 4935-4940. [19] E. Charnaya, C. Tien, M.K. Lee, Y.A. Kumzerov, J. Phys.: Condens. Matter 21 (2009) 455304. [20] M.K. Lee, C. Tien, E. Charnaya, H.-S. Sheu, Y.A. Kumzerov, Phys. Lett. A 374 (2010) 1570-1573. [21] A.R. Oganov, C.J. Pickard, Q. Zhu, R.J. Needs, Nat. Rev. Mater. 4(2019) 331-348. [22] J. Nyman, S.M.Reutzel-Edens, Faraday Discuss. 211(2018) 459-476. [23] C.J. Pickard, R. Needs, J. Phys.: Condens. Matter 23 (2011) 053201. [24] S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Science 220 (1983) 671-680. [25] M. Amsler, S. Goedecker, J. Chem. Phys. 133(2010) 224104. [26] Z. Li, H.A. Scheraga, Proc. Natl. Acad. Sci. U. S. A. 84 (6611) (1987) 6611-6615. [27] Y. Wang, J. Lv, L. Zhu, Y. Ma, Phys. Rev. B 82 (2010) 094116. [28] A. Barducci, M. Bonomi, M. Parrinello, Wiley Interdiscip, Rev.: Comput. Mol. Sci. 1(2011) 826-843. [29] A.R. Oganov, C.W. Glass, J. Chem. Phys. 124(2006) 244704. [30] O. Degtyareva, M. McMahon, D. Allan, R. Nelmes, Phys. Rev. Lett. 93(2004) 205502. [31] J. Behler, M. Parrinello, Phys. Rev. Lett. 98(2007) 146401. [32] L. Zhang, J. Han, H. Wang, R. Car, E. Weinan, Phys. Rev. Lett. 120(2018) 143001. [33] E.V. Podryabinkin, E.V. Tikhonov, A.V. Shapeev, A.R. Oganov, Phys. Rev. B 99 (2019) 064114. [34] B. Monserrat, J.G. Brandenburg, E.A. Engel, B. Cheng, Nat. Commun. 11(2020) 5757. [35] C. Hong, J.M. Choi, W. Jeong, S. Kang, S. Ju, K. Lee, J. Jung, Y. Youn, S. Han, Phys. Rev. B 102 (2020) 224104. [36] L. Zhang, M. Yang, S. Zhang, H. Niu, J. Mater. Sci.Technol. 185(2024) 23-31. [37] H. Wang, L. Zhang, J. Han, E. Weinan, Comput. Phys. Commun. 228(2018) 178-184. [38] C.W. Glass, A.R. Oganov, N. Hansen, Comput. Phys. Commun. 175(2006) 713-720. [39] D. Hicks, C. Toher, D.C. Ford, F. Rose, C.D. Santo, O. Levy, M.J. Mehl, S. Curtarolo, npj Comput.Mater. 6(2022) 61-80. [40] A.P. Bartók, R. Kondor, G. Csanyi, Phys. Rev. B 87 (2013) 184115. [41] B. Cheng, R. R. Griffiths, S. Wengert, C. Kunkel, T. Stenczel, B. Zhu, V.L.Deringer, N.Bernstein, J.T. Margraf, K. Reuter, G. Csanyi, Acc. Chem. Res. 53(2020) 1981-1991. [42] J. Vande Vondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phy. Commun. 167(2005) 103-128. [43] T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald, F. Stein, T. Laino, R.Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, Chulkov S, M.H. Bani-Hashemian, V. Weber, U. Bortnik, M. Taillefumier, A.S. Jakobovits, A. Lazzaro, Hl. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G.K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöss, M. Lass, I. Bethune, C.J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, J. Hutter, J. Chem. Phys. 152(2020) 194103. [44] W. Kohn, L.J. Sham, Phys. Rev. 140(1965) A1133-A1138. [45] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6(1996) 15-50. [46] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186. [47] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, A.Kohlmeyer P.J.I.Veld, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271(2022) 108171. [48] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1(2013) 011002. [49] X. Gong, G.L. Chiarotti, M. Parrinello, E. Tosatti, Phys. Rev. B 43 (1991) 14277. [50] H. Niu, X.-Q. Chen, S.Wang, D. Li, W.L. Mao, Y. Li, Phys. Rev. Lett. 108(2012) 135501. [51] D. Donadio, P. Raiteri, M. Parrinello, J. Phys. Chem.B. 109(2005) 5421-5424. [52] P. Pirzadeh, E.N. Beaudoin, P.G. Kusalik, Chem. Phys. Lett. 517(2011) 117-125. [53] K. Mochizuki, M. Matsumoto, I. Ohmine, Nature 498 (2013) 350-354. [54] A. Togo, I. Tanaka, Scr. Mater. 108(2015) 1-5. [55] Z. Liu, Y. Bando, M. Mitome, J. Zhan, Phys. Rev. Lett. 93(2004) 095504. |
| [1] | Wang Yi, Sa Ma, Jianbao Gao, Jing Zhong, Tianchuang Gao, Shenglan Yang, Lijun Zhang, Qian Li. A novel atomic mobility model for alloys under pressure and its application in high pressure heat treatment Al-Si alloys by integrating CALPHAD and machine learning [J]. J. Mater. Sci. Technol., 2025, 217(0): 116-127. |
| [2] | Peng Wang, Haohang Yuan, Baoluo He, Ruisheng Guo, Shujuan Liu, Qian Ye, Feng Zhou, Weimin Liu. NIR-light-induced plasmonic liquid metal/ionic liquid/MXene polyurethane films with excellent antifouling and self-healing capabilities [J]. J. Mater. Sci. Technol., 2025, 221(0): 1-10. |
| [3] | Shen Tao, Yansong Li, Hui Peng, Hongbo Guo, Bo Chen. Multi-objective optimisation and verification of creep-resistant Ni-base superalloy for electron-beam powder-bed-fusion [J]. J. Mater. Sci. Technol., 2025, 221(0): 84-101. |
| [4] | Jinyu Liang, Fan Zhao, Guoliang Xie, Rui Wang, Xiao Liu, Wenli Xue, Xinhua Liu. Improving mechanical and electrical properties of Cu-Ni-Si alloy via machine learning assisted optimization of two-stage aging processing [J]. J. Mater. Sci. Technol., 2025, 221(0): 155-167. |
| [5] | Zhiyuan Liu, Tianyou Wang, Li Jin, Jian Zeng, Shuai Dong, Fenghua Wang, Fulin Wang, Jie Dong. Towards high stiffness and ductility—The Mg-Al-Y alloy design through machine learning [J]. J. Mater. Sci. Technol., 2025, 221(0): 194-203. |
| [6] | Haojie Mei, Luyao Cheng, Liang Chen, Feifei Wang, Guiqin Yang, Jinfu Li, Lingti Kong. Zn segregation in BCC Fe grain boundaries and its role in liquid metal embrittlement revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2025, 225(0): 21-30. |
| [7] | Ziyi Zhang, Songya Wang, Changcheng Chen, Minghong Sun, Zhengjun Wang, Yan Cai, Yali Tuo, Yuxi Du, Zhao Han, Xiongfei Yun, Xiaoning Guan, Shaohang Shi, Jiangzhou Xie, Gang Liu, Pengfei Lu. Design of photovoltaic materials assisted by machine learning and the mechanical tunability under micro-strain [J]. J. Mater. Sci. Technol., 2025, 227(0): 108-121. |
| [8] | Aihua Yu, Yu Pan, Fucheng Wan, Fan Kuang, Xin Lu. Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II [J]. J. Mater. Sci. Technol., 2025, 228(0): 241-255. |
| [9] | Muzhi Ma, Zhou Li, Yuyuan Zhao, Shen Gong, Qian Lei, Yanlin Jia, Wenting Qiu, Zhu Xiao, Yanbin Jiang, Xiandong Xu, Biaobiao Yang, Chenying Shi. Developing softening-resistant Cu-Cr alloys and understanding their mechanisms via mechanism-informed interpretable machine learning [J]. J. Mater. Sci. Technol., 2025, 229(0): 252-268. |
| [10] | Akash A. Deshmukh, Raghavan Ranganathan. Recent advances in modelling structure-property correlations in high-entropy alloys [J]. J. Mater. Sci. Technol., 2025, 204(0): 127-151. |
| [11] | Yuhang Wang, Yaqin Zhang, Ninggui Ma, Jun Zhao, Yu Xiong, Shuang Luo, Jun Fan. Machine learning accelerated catalysts design for CO reduction: An interpretability and transferability analysis [J]. J. Mater. Sci. Technol., 2025, 213(0): 14-23. |
| [12] | Monunith Anithkumar, Nirmal Prashanth Maria Joseph Raj, Asokan Poorani Sathya Prasanna, Thanjan Shaji Bincy, Sang-Jae Kim. Enhancing triboelectrification with synergistic effect of xBNT-(1-x)BKT fillers and machine learning enabled advanced air mouse technology [J]. J. Mater. Sci. Technol., 2025, 231(0): 105-114. |
| [13] | Changlu Zhou, Ruihao Yuan, Baolong Su, Jiangkun Fan, Bin Tang, Pingxiang Zhang, Jinshan Li. Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning [J]. J. Mater. Sci. Technol., 2024, 178(0): 39-47. |
| [14] | Linshuang Zhang, Manyi Yang, Shiwei Zhang, Haiyang Niu. Unveiling the crystallization mechanism of cadmium selenide via molecular dynamics simulation with machine-learning-based deep potential [J]. J. Mater. Sci. Technol., 2024, 185(0): 23-31. |
| [15] | Yuhong Cui, Guangkai Jin, Shenghua Xue, Shujuan Liu, Qian Ye, Feng Zhou, Weimin Liu. Laser manufactured-liquid metal nanodroplets intercalated Mxene as oil-based lubricant additives for reducing friction and wear [J]. J. Mater. Sci. Technol., 2024, 187(0): 169-176. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
