J. Mater. Sci. Technol. ›› 2023, Vol. 150: 168-174.DOI: 10.1016/j.jmst.2022.12.020
• Research Article • Previous Articles Next Articles
Haoran Fenga,1, Qian Denga,1, Yan Zhonga, Xuri Raoa, Yadong Wanga, Jianglong Zhua, Fujie Zhanga, Ran Anga,b,*
Received:
2022-11-14
Revised:
2022-12-18
Accepted:
2022-12-19
Published:
2023-07-01
Online:
2023-02-10
Contact:
* E-mail address: About author:
1 These authors contributed equally to this work.
Haoran Feng, Qian Deng, Yan Zhong, Xuri Rao, Yadong Wang, Jianglong Zhu, Fujie Zhang, Ran Ang. Annealing engineering induced high thermoelectric performance in Yb-filled CoSb3 skutterudites[J]. J. Mater. Sci. Technol., 2023, 150: 168-174.
[1] L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Sci- ence 351 (2016) 141-144. [2] Z.Y. Liu, J.L. Zhu, X. Tong, S. Niu, W.Y. Zhao, J. Adv. Ceram. 9(2020) 647-673. [3] M. Rull-Bravo, A. Moure, J.F. Fernández, M. Martín-González, RSC Adv. 5(2015) 41653-41667. [4] X. Shi, S.Q. Bai, L.L. Xi, J. Yang, W.Q. Zhang, L.D. Chen, J. Yang, J. Mater. Res. 26(2011) 1745-1754. [5] D. Beretta, N. Neophytou, J.M. Hodges, M.G. Kanatzidis, D. Narducci, M. Martin-Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, A.I. Hof- mann, C. Müller, B. Dörling, M. Campoy-Quiles, M. Caironi, Mater. Sci. Eng., R 138 (2019) 210-255. [6] G. Schierning, R. Chavez, R. Schmechel, B. Balke, G. Rogl, P. Rogl, Transl. Mater. Res. 2(2015) 025001. [7] G.J. Tan, M. Ohta, M.G. Kanatzidis, Philos. Trans. Royal Soc. A 377 (2019) 20180450. [8] M.N. Hasan, H. Wahid, N. Nayan, M.S.Mohamed Ali, Int. J. Energy Res. 44(2020) 6170-6222. [9] B. Song, S. Lee, S. Cho, M.-.J. Song, S.-.M. Choi, W.-.S. Seo, Y. Yoon, W. Lee, J. Alloy. Compd. 617(2014) 160-162. [10] B.C. Sales, D. Mandrus, R.K. Williams, Science 272 (1996) 1325-1328. [11] G.S. Nolas, J.L. Cohn, G.A. Slack, Phys. Rev. B 58 (1998) 164-170. [12] X.F. Tang, L.M. Zhang, R.Z. Yuan, L.D. Chen, T. Goto, T. Hirai, J.S. Dyck, W. Chen, C. Uher, J. Mater. Res. 16(2001) 3343-3346. [13] A. Muto, J. Yang, B. Poudel, Z.F. Ren, G. Chen, Adv. Energy Mater. 3(2013) 245-251. [14] G.S. Nolas, D.T. Morelli, T.M. Tritt, Annu. Rev. Mater. Sci. 29(1999) 89-116. [15] Z.G. Mei, J. Yang, Y.Z. Pei, W. Zhang, L.D. Chen, J.H. Yang, Phys. Rev. B 77 (2008) 045202. [16] P.-.X. Lu, Q.-.H. Ma, Y. Li, X. Hu, J. Magn. Magn. Mater. 322(2010) 3080-3083. [17] Y.L. Tang, Z.M. Gibbs, L.A. Agapito, G.D. Li, H.S. Kim, M.B. Nardelli, S. Curtarolo, G.J. Snyder, Nat. Mater. 14(2015) 1223-1228. [18] D.J. Singh, W.E. Pickett, Phys. Rev. B 50 (1994) 11235-11238. [19] J.O. Sofo, G.D. Mahan, Phys. Rev. B 58 (1998) 15620-15623. [20] Y. Kawaharada, K. Kuroaski, M. Uno, S. Yamanaka, J. Alloy. Compd. 315(2001) 193-197. [21] G.A. Slack, CRC Handbook of Thermoelectric, CRC Press, Boca Raton, 1995. [22] G.J. Snyder, E.S. Toberer, Nat. Mater. 7(2008) 105-114. [23] R. Bhardwaj, P.R. Raghuvanshi, S.R. Dhakate, S. Bathula, A. Bhattacharya, B. Gahtori, ACS Appl. Energy Mater. 4(2021) 14210-14219. [24] Z.-.H. Zheng, J.-.Y. Niu, D.-.W. Ao, B. Jabar, X.-.L. Shi, X.-.R. Li, F. Li, G.-.X. Liang, Y.-.X. Chen, Z.-.G. Chen, P. Fan, J. Mater. Sci. Technol. 92(2021) 178-185. [25] A. Masarrat, A. Bhogra, R. Meena, R. Urkude, A. Niazi, A. Kandasami, J. Electron. Mater. 51(2022) 3350-3358. [26] S.Y. Wang, J.R. Salvador, J. Yang, P. Wei, B. Duan, J.H. Yang, NPG Asia Mater. 8(2016) e285. [27] W. Ren, Y. Sun, J.L. Zhang, Y.P. Xia, H.Y. Geng, L. Zhang, Acta Mater. 209(2021) 116791. [28] X. Shi, H. Kong, C.-.P. Li, C.Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, W. Zhang, Appl. Phys. Lett. 92(2008) 182101. [29] J. Kim, Y. Ohishi, H. Muta, K. Kurosaki, AIP Adv. 8(2018) 105104. [30] S. Wan, P.F. Qiu, X.Y. Huang, Q.F. Song, S.Q. Bai, X. Shi, L.D. Chen, ACS Appl. Mater. Interfaces 10 (2018) 625-634. [31] L. Deng, L.B. Wang, J. Ni, J.M. Qin, X.P. Jia, H.A. Ma, Mater. Lett. 217(2018) 44-47. [32] J.L. Zhu, Z.Y. Liu, X. Tong, A.L. Xia, D. Xu, Y. Lei, J. Yu, D.G. Tang, X.F. Ruan, W.Y. Zhao, ACS Appl. Mater. Interfaces 13 (2021) 23894-23904. [33] D. Qin, B. Cui, X. Meng, P. Qin, L. Xie, Q. Zhang, W. Liu, J. Cao, W. Cai, J. Sui, Mater. Today Phys. 8(2019) 128-137. [34] X.F. Meng, Z.H. Liu, B. Cui, D.D. Qin, H.Y. Geng, W. Cai, L.W. Fu, J.Q. He, Z.F. Ren, J.H. Sui, Adv. Energy Mater. 7(2017) 1602582. [35] Z. Xiong, X.H. Chen, X.Y. Huang, S.Q. Bai, L.D. Chen, Acta Mater. 58(2010) 3995-4002. [36] H. Li, X.F. Tang, Q.J. Zhang, C. Uher, Appl. Phys. Lett. 94(2009) 102114. [37] D.D. Qin, H.J. Wu, S.T. Cai, J.B. Zhu, B. Cui, L. Yin, H.X. Qin, W.J. Shi, Y. Zhang, Q. Zhang, W.S. Liu, J. Cao, S.J. Pennycook, W. Cai, J.H. Sui, Adv. Energy Mater. 9(2019) 1902435. [38] S. Yadav, S. Chaudhary, D.K. Pandya, Appl. Surf. Sci. 435(2018) 1265-1272. [39] W. Li, P. Zhai, G. Li, X. Yang, L. Liu, Mater. Res. Innovations 18 (2014) 106-109. [40] W.J. Li, G.D. Li, X.Q. Yang, L.S. Liu, P.C. Zhai, J. Electron. Mater. 44(2014) 1477-1482. [41] X.Q. Yang, P.C. Zhai, L.S. Liu, G. Chen, Q.J. Zhang, J. Electron. Mater. 43(2014) 1842-1846. [42] G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, O. Eibl, Acta Mater. 63(2014) 30-43. [43] G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, P. Rogl, Acta Mater. 95(2015) 201-211. [44] X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, L.D. Chen, J. Am. Chem.Soc. 133(2011) 7837-7846. [45] X. Shi, W. Zhang, L.D. Chen, J. Yang, Phys. Rev. Lett. 95(2005) 185503. [46] T. Dahal, Q. Jie, G. Joshi, S. Chen, C.F. Guo, Y.C. Lan, Z.F. Ren, Acta Mater. 75(2014) 316-321. [47] J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, J.A. Harri- man, V.M. Varki, M.S. Dresselhaus, G. Chen, Z.F. Ren, Phys. Rev. B 80 (2009) 115329. [48] J.R. Salvador, J. Yang, X. Shi, H. Wang, A .A. Wereszczak, H.Kong, C. Uher, Philos. Mag. 89(2009) 1517-1534. [49] H. Li, X.F. Tang, Q.J. Zhang, C. Uher, Appl. Phys. Lett. 93(2008) 252109-252103. [50] C. He, M. Daniel, M. Grossmann, O. Ristow, D. Brick, M. Schubert, M. Albrecht, T. Dekorsy, Phys. Rev. B 89 (2014) 174303. [51] Y.L. Tang, S.-.W. Chen, G.J. Snyder, J. Materiomics 1 (2015) 75-84. [52] N.N. Zhuravlev, G.S. Zhdanov, Sov. Phys. JETP 1 (1955) 91-99. [53] W. Klemm, H. Bommer, Z. Anorg. Allg.Chem. 231(1937) 138-171. [54] Z.Y. Liu, W.T. Zhu, X.L. Nie, W.Y. Zhao, J. Mater. Sci.: Mater. Electron. 30(2019) 12493-12499. [55] A. Schmitz, C. Schmid, C. Stiewe, J.D. Boor, E. Müller, Phys. Status Solidi A 213 (2016) 758-765. [56] T.J. Slade, J.A. Grovogui, J.J. Kuo, S. Anand, T.P. Bailey, M. Wood, C. Uher, G.J. Snyder, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 13(2020) 1509-1518. [57] M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, S. Turenne, J. Electron. Mater. 43(2014) 2239-2246. [58] L.W. Zhao, W.B. Qiu, Y.X. Sun, L.Q. Chen, H. Deng, L. Yang, X.M. Shi, J. Tang, J. Alloy. Compd. 863(2021) 158376. [59] D. Zhang, J.D. Lei, W.B. Guan, Z. Ma, C. Wang, L.J. Zhang, Z.X. Cheng, Y.X. Wang, J. Alloy. Compd. 784(2019) 1276-1283. [60] X. Ai, D.K. Hou, X.Y. Liu, S.J. Gu, L.J. Wang, W. Jiang, Scr. Mater. 179(2020) 86-91. [61] Z.Y. Liu, J.L. Zhu, P. Wei, W.T. Zhu, W.Y. Zhao, A.L. Xia, D. Xu, Y. Lei, J. Yu, ACS Appl. Mater. Interfaces 11 (2019) 45875-45884. [62] K.H. Lee, S.H. Bae, S.M. Choi, Materials (Basel) 13(2019) 87. [63] Z.G. Mei, W. Zhang, L.D. Chen, J. Yang, Phys. Rev. B 74 (2006) 153202. [64] H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, H. Tashiro, J. Appl. Phys. 86(1999) 3780-3786. [65] A. Pakdel, Q.S. Guo, V. Nicolosi, T. Mori, J. Mater. Chem. A 6 (2018) 21341-21349. [66] G.Y. Xu, P. Ren, T. Lin, X.F. Wu, Y.H. Zhang, S.T. Niu, T.P. Bailey, J. Appl. Phys. 123(2018) 015101. [67] J. Yang, L. Xi, W. Zhang, L.D. Chen, J.H. Yang, J. Electron. Mater. 38(2009) 1397-1401. [68] W. Wang, J.B. Zhu, D.D. Qin, W.J. Shi, S.T. Cai, Y.X. Sun, H.X. Qin, J. Cao, Q. Zhang, W. Cai, J.H. Sui, ACS Appl. Mater. Interfaces 13 (2021) 39533-39540. [69] J.R. Salvador, R.A. Waldo, C.A. Wong, M. Tessema, D.N. Brown, D.J. Miller, H. Wang, A .A. Wereszczak, W. Cai, Mater. Sci. Eng., B 178 (2013) 1087-1096. [70] Z.Y. Chen, J. Li, J. Tang, F.J. Zhang, Y. Zhong, H.T. Liu, R. Ang, J. Mater. Sci.Tech- nol. 89(2021) 45-51. [71] D.D. Qin, B. Cui, L. Yin, X. Zhao, Q. Zhang, J. Cao, W. Cai, J.H. Sui, ACS Appl. Mater. Interfaces 11 (2019) 25133-25139. [72] H. Li, X.F. Tang, X.L. Su, Q.J. Zhang, C. Uher, J. Phys.D: Appl. Phys. 42(2009) 145409. |
[1] | Qun Luo, Xingrui Li, Qian Li, Lingyang Yuan, Liming Peng, Fusheng Pan, Wenjiang Ding. Achieving grain refinement of α-Al and Si modification simultaneously by La‒B‒Sr addition in Al‒10Si alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 97-110. |
[2] | Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, J. Eckert. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy [J]. J. Mater. Sci. Technol., 2023, 132(0): 119-131. |
[3] | Bing Lu, Yong Li, Wei Yu, Haiyao Wang, Yin Wang, Zhaodong Wang, Guangming Xu. Strength and ductility enhancement of twin-roll cast Al-Zn-Mg-Cu alloys with high solidification intervals through a synergistic segregation-controlling strategy [J]. J. Mater. Sci. Technol., 2023, 142(0): 225-239. |
[4] | Nagasivamuni Balasubramani, Jeffrey Venezuela, David StJohn, Gui Wang, Matthew Dargusch. A review of the origin of equiaxed grains during solidification under mechanical stirring, vibration, electromagnetic, electric-current, and ultrasonic treatments [J]. J. Mater. Sci. Technol., 2023, 144(0): 243-265. |
[5] | Xu Xiaolong, Tang Cheng, Wang Hongfu, An Yukang, Zhao Yuhong. Microstructure evolution and grain refinement mechanism of rapidly solidified single-phase copper based alloys [J]. J. Mater. Sci. Technol., 2022, 128(0): 160-179. |
[6] | Yang Bowei, Wang Yu, Gao Minqiang, Wang Changfeng, Guan Renguo. Microstructural evolution and strengthening mechanism of Al-Mg alloys with fine grains processed by accumulative continuous extrusion forming [J]. J. Mater. Sci. Technol., 2022, 128(0): 195-204. |
[7] | Changzheng Li, Huan Liu, Yunchang Xin, Bo Guan, Guangjie Huang, Peidong Wu, Qing Liu. Achieving ultra-high strength using densely ultra-fine LPSO phase [J]. J. Mater. Sci. Technol., 2022, 129(0): 135-138. |
[8] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[9] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
[10] | Miao Wang, Xingwei Huang, Peng Xue, Shangquan Wu, Chuanyong Cui, Qingchuan Zhang. High strength and ductility achieved in friction stir processed Ni-Co based superalloy with fine grains and nanotwins [J]. J. Mater. Sci. Technol., 2022, 106(0): 162-172. |
[11] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
[12] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[13] | J.M. Yu, T. Hashimoto, H.T. Li, N. Wanderka, Z. Zhang, C. Cai, X.L. Zhong, J. Qin, Q.P. Dong, H. Nagaumi, X.N. Wang. Formation of intermetallic phases in unrefined and refined AA6082 Al alloys investigated by using SEM-based ultramicrotomy tomography [J]. J. Mater. Sci. Technol., 2022, 120(0): 118-128. |
[14] | Xiaohui Liu, Yunzhong Liu, Zhiguang Zhou, Qiangkun Zhan. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy [J]. J. Mater. Sci. Technol., 2022, 124(0): 41-52. |
[15] | Cheng Zhu, Zhihao Zhao, Qingfeng Zhu, Gaosong Wang, Yubo Zuo, Qiangqiang Li, Gaowu Qin. Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 114-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||