J. Mater. Sci. Technol. ›› 2022, Vol. 97: 213-222.DOI: 10.1016/j.jmst.2021.04.055
• Research Article • Previous Articles Next Articles
Haicheng Wanga,*(), Huating Wua, Huifang Pangb, Yuhua Xionga, Shuwang Maa, Yuping Duanb,*(
), Yanglong Houc,*(
), Changhui Maoa
Received:
2021-04-19
Revised:
2021-04-19
Accepted:
2021-04-19
Published:
2021-04-19
Online:
2021-04-19
Contact:
Haicheng Wang,Yuping Duan,Yanglong Hou
About author:
hou@pku.edu.cn (Y. Hou).Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 97: 213-222.
Fig. 2. (a) SEM image of PPy, (b-d) SEM images of SiO2(10%)/PPy, Co/PPy, and (Co, SiO2(22%))/PPy, (e-g) TEM images of pure Co nanoparticles, SiO2(10%)/PPy, (h-k) STEM-HADDF image of (Co, SiO2(22%))/PPy, and EDS mapping of corresponding elements distribution.
Fig. 4. Electromagnetic parameters of (Co, SiO2)/PPy composite (20 wt% filled in paraffin) with different SiO2 contents: (a) ε´, (b) ε´´, (c) μ´, (d) μ´´, (e) tanδE, (f) tanδM.
Fig. 5. Cole-Cole curves of (Co, SiO2)/PPy composites with different SiO2 contents: (a) (Co, SiO2(18%))/PPy, (b) (Co, SiO2(22%))/PPy, (c) (Co, SiO2(26%))/PPy, (d) (Co, SiO2(30%))/PPy.
Fig. 7. Reflection loss curves of (Co, SiO2)/PPy with different SiO2 contents: (a) (Co, SiO2(18%))/PPy, (b) (Co, SiO2(22%))/PPy, (c) (Co, SiO2(26%))/PPy, (d) (Co,SiO2(30%))/PPy, (e-h) the corresponding 3D contour maps.
Absorbers | Thickness (mm) | Maximum RL (dB) | Frequency range (RL<-10 dB) | EAB | Refs. |
---|---|---|---|---|---|
Fe3O4@PPy | 2.5 | -31.5(15.4 GHz) | 12.8-18.0 | 5.2 | [ |
S-PPy/RGO | 3.0 | -54.4(12.7 GHz) | 10.2-16.9 | 6.7 | [ |
PPy-γ-Fe2O3-fly ash | 3.0 | -25.5(18.0 GHz) | 12.4-18.0 | 5.6 | [ |
FeCo/C/PPy | 2.2 | -19.5(13.6 GHz) | 11.2-16.9 | 5.7 | [ |
Fe3O4@SiO2@PPy | 5.0 | -40.9(6.0 GHz) | 11.12-18 | 6.88 | [ |
γ-Fe2O3/SiO2-SO3H/PPy | 2.5 | -42.8(11.9 GHz) | 10.0-14.8 | 4.8 | [ |
γ-Fe2O3/(SiO2)2-SO3H/PPy | 2.0 | -43.1(15.1 GHz) | 11.9-18.0 | 6.1 | [ |
γ-Fe2O3/(SiO2)3-SO3H/PPy | 4.0 | -42.3(6.48 GHz) | 5.52-7.76 | 2.2 | [ |
(Co, SiO2)/PPy | 3.002 | -65.31(11.115 GHz) | 8.905 -14.005 | 5.1 | Herein |
Table 1 The microwave absorbing properties of PPy-based composite.
Absorbers | Thickness (mm) | Maximum RL (dB) | Frequency range (RL<-10 dB) | EAB | Refs. |
---|---|---|---|---|---|
Fe3O4@PPy | 2.5 | -31.5(15.4 GHz) | 12.8-18.0 | 5.2 | [ |
S-PPy/RGO | 3.0 | -54.4(12.7 GHz) | 10.2-16.9 | 6.7 | [ |
PPy-γ-Fe2O3-fly ash | 3.0 | -25.5(18.0 GHz) | 12.4-18.0 | 5.6 | [ |
FeCo/C/PPy | 2.2 | -19.5(13.6 GHz) | 11.2-16.9 | 5.7 | [ |
Fe3O4@SiO2@PPy | 5.0 | -40.9(6.0 GHz) | 11.12-18 | 6.88 | [ |
γ-Fe2O3/SiO2-SO3H/PPy | 2.5 | -42.8(11.9 GHz) | 10.0-14.8 | 4.8 | [ |
γ-Fe2O3/(SiO2)2-SO3H/PPy | 2.0 | -43.1(15.1 GHz) | 11.9-18.0 | 6.1 | [ |
γ-Fe2O3/(SiO2)3-SO3H/PPy | 4.0 | -42.3(6.48 GHz) | 5.52-7.76 | 2.2 | [ |
(Co, SiO2)/PPy | 3.002 | -65.31(11.115 GHz) | 8.905 -14.005 | 5.1 | Herein |
Fig. 10. (a) The RL of (Co, SiO2(22%))/PPy composite at different thicknesses and the corresponding maps of simulated thickness calculated by 1/4 wavelength theory. (b) The corresponding maps of optimal RL, simulated thickness and Zin variation with frequency.
[1] |
H.L. Lv, Z.H. Yang, P. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C. Xu, Adv. Mater. 30 (2018) 1706343.
DOI URL |
[2] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, P.B. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[3] |
T.Q. Hou, Z.R. Jia, B.B. Wang, H.B. Li, X.H. Liu, L. Bi, G.L. Wu, Chem. Eng. J. 414 (2021) 128875.
DOI URL |
[4] | S. Ghosh, P. Das, S. Ganguly, S. Remanan, T.K. Das, S.K. Bhattacharyya, J. Baral, A.K. Das, T. Laha, N.C. Das, Chem. Select 4 (2019) 11748-11754. |
[5] |
T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[6] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[7] |
S. Ganguly, P. Bhawal, R. Ravindren, N.C. Das, J. Nanosci. Nanotechnol. 18 (2018) 7641-7669.
DOI URL |
[8] |
P. Liu, S. Gao, Y. Wang, Y. Huang, P. Liu, Carbon N Y 173 (2021) 655-666.
DOI URL |
[9] |
X.F. Zhou, Z.R. Jia, X.X. Zhang, B.B. Wang, W. Wu, X.H. Liu, B.H. Xu, G.L. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
[10] | P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano-Mi-cro Lett 13 (2021) 91. |
[11] |
Z.G. Gao, Z.R. Jia, K.K. Wang, X.H. Liu, G.L. Wu L.Bi, Chem. Eng. J. 402 (2020) 125951.
DOI URL |
[12] |
X. Yuan, X. Xue, H. Ma, S. Guo, L. Cheng, Nanotechnology 28 (2017) 375705.
DOI URL |
[13] |
S. Dong, X. Zhang, W. Zhang, J. Han, P. Hu, J. Mater. Chem. C 6 (2018) 10804-10814.
DOI URL |
[14] |
C. Liang, W. Qin, Z. Wang, J. Alloys Compd. 781 (2019) 93-100.
DOI URL |
[15] |
S.B. Ni, S.M. Lin, Q.T. Pan, F. Yang, K. Huang, D.Y. He, J. Phys. D: Appl. Phys 42 (2009) 055004.
DOI URL |
[16] |
J. Yan, Y. Huang, C. Wei, N. Zhang, P. Liu, Compos. Part A: Appl. Sci. Manuf. 99 (2017) 121-128.
DOI URL |
[17] |
Z.R. Jia, Z.G. Gao, K.C. Kou, A.L. Feng, C.H. Zhang, B.H. Xu, G.L. Wu, Compos. Commun. 20 (2020) 100344.
DOI URL |
[18] | X. Wang, Y. Lu, T. Zhu, S. Chang W. Wang, Chem. Eng. J. 388 (2020) 124317-1-16. |
[19] |
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma, Y. Liu, S. Gao, W. Zhang, Small 15 (2019) 1902730.
DOI URL |
[20] |
A. Xie, F. Wu, M. Sun, M. Dai, Z. Xu, Y. Qiu, Y. Wang, M. Wang, Appl. Phys. Lett. 106 (2015) 222902.
DOI URL |
[21] |
A. Xie, W. Jiang, F. Wu, X. Dai, M. Sun, Y. Wang, M. Wang, J. Appl. Phys. 118 (2015) 204105.
DOI URL |
[22] |
Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Adv. Mater. 25 (2013) 591-595.
DOI URL |
[23] |
S. Han, S. Wang, W. Li, Y. Lai, N. Zhang, N. Yang, Q. Wang, W. Jiang, Ceram. Int. 44 (2018) 10352-10361.
DOI URL |
[24] |
K. Zhang, A. Xie, F. Wu, W. Jiang, M. Wang, W. Dong, Mater. Res. Express 3 (2016) 055008.
DOI URL |
[25] |
X. Feng, J. Yang, Y. Bie, J. Wang, Y. Nuli, W. Lu, Nanoscale 6 (2014) 12532-12539.
DOI URL |
[26] |
L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, F. Li, Nanotechnology 21 (2010) 095708.
DOI URL |
[27] |
K. Atmane, F. Zighem, Y. Soumare, M. Ibrahim, R. Boubekri, T. Maurer, J. Mar-guerutat, J. Piquemal, F. Ott, G. Chaboussant, F. Schoenstein, N. Jouini, G. Viau, J. Solid State Chem. 197 (2013) 297-303.
DOI URL |
[28] |
M. Gong, A. Kirkeminde, M. Wuttig, S. Ren, Nano Letter 14 (2014) 6493-6498.
DOI URL |
[29] |
M. Conte, J. Sahoo, Y. Abulhaija, K. Lau, R. Ulign, ACS Appl. Mater. Interfaces 10 (2018) 3069-3075.
DOI URL |
[30] |
H. Wang, Z. Yan, J. An, J. He, Y. Hou, N. Ma, G. Yu, D. Sun, RSC Adv. 6 (2016) 92152-92158.
DOI URL |
[31] | R.S. Dubey, Y.B.R.D. Rajesh, M.A. More, Mater, Today: Proc 2 (2015) 3575-3579. |
[32] |
P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao, J.W. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
[33] |
C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Kong, J.W. Gu, Sci. Bull. 65 (2020) 616-622.
DOI URL |
[34] |
L. Fonseca, R. Faez, F. Camilo, M. Bizeto, Microporous Mesoporous Mater 159 (2012) 24-29.
DOI URL |
[35] |
T. Liu, N. Liu, S. Zhai, S. Gao, Z. Xiao, Q. An, D. Yang, J. Alloys Compd. 779 (2019) 831-843.
DOI URL |
[36] |
J. Zang, C. Li, S. Bao, X. Cui, Q. Bao, C. Sun, Macromolecules 41 (2008) 7053-7057.
DOI URL |
[37] | J. Zhao, J.L. Zhang, L. Wang, S.S. Lyu, W.L. Ye, B. Xu, H. Qiu, L.X. Chen, J.W. Gu, Compos. Pt. A-Appl.Sci. Manuf. 129 (2020) 105714. |
[38] |
A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A. Botz, R. Fischer, W. Schuhmann, M. Muhler, Angew. Chem. Int. Ed. 55 (2016) 4087-4091.
DOI URL |
[39] |
J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[40] |
Y. Wang, Y. Lai, S. Wang, W. Jiang, Ceram. Int. 43 (2017) 1887-1894.
DOI URL |
[41] |
H.C. Wang, N. Ma, Z.R. Yan, L. Deng, J. He, Y.L. Hou, Y. Jiang, G.H. Yu, Nanoscale 7 (2015) 7189-7196.
DOI URL |
[42] |
C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, ACS Appl. Mater. Interfaces 7 (2015) 20090-20099.
DOI URL |
[43] | H. Yan, X. Song, Y. Wang, AIP Adv. 8 (2018) 2158-3226. |
[44] |
Y. Cheng, M. Tan, P. Hu, X. Zhang, B. Sun, L. Yan, S. Zhou, W. Han, Appl. Surf. Sci. 448 (2018) 138-144.
DOI URL |
[45] |
X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong, G. Qin, ACS Appl. Mater. Interfaces 8 (2016) 3494-3498.
DOI URL |
[46] |
T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Yong, ACS Appl. Mater. Interfaces 8 (2016) 7370-7380.
DOI URL |
[47] |
F. Wen, H. Hou, J. Xiang, X. Zhang, Z. Su, S. Yuan, Z. Liu, Carbon N Y 89 (2015) 372-377.
DOI URL |
[48] |
C. Li, Y. Ge, X. Jiang, G. Waterhouse, Z. Zhang, L. Yu, Ceram. Int. 44 (2018) 19171-19183.
DOI URL |
[49] |
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian, Z. Li, X. Han, P. Xu, J. Mater. Chem. A 3 (2015) 13426-13434.
DOI URL |
[50] |
C. Beatrice, S. Dobak, V. Tsakaloudi, C. Ragusa, F. Fiorillo, L. Martino, V. Zaspalis, AIP Adv. 8 (2018) 047803.
DOI URL |
[51] |
H. Saotome, K. Azuma, H. Kizuka, T. Tanaka, AIP Adv. 8 (2018) 056103.
DOI URL |
[52] |
M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Ind. Eng. Chem. Res. 55 (2016) 6263-6275.
DOI URL |
[53] |
C. Li, Y. Zhang, S. Ji, X. Jiang, Z. Zhang, L. Yu, J. Mater. Sci. 53 (2018) 5270-5286.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||