J. Mater. Sci. Technol. ›› 2022, Vol. 130: 198-207.DOI: 10.1016/j.jmst.2022.05.031
• Research Article • Previous Articles Next Articles
Xiang Lva, Nan Zhanga, Yinchang Mab, Xi-xiang Zhangb, Jiagang Wua,*()
Received:
2022-04-08
Revised:
2022-05-15
Accepted:
2022-05-18
Published:
2022-12-10
Online:
2022-12-07
Contact:
Jiagang Wu
About author:
∗ E-mail addresses: msewujg@scu.edu.cn, wujiagang0208@163.com (J. Wu)Xiang Lv, Nan Zhang, Yinchang Ma, Xi-xiang Zhang, Jiagang Wu. Coupling effects of the A-site ions on high-performance potassium sodium niobate ceramics[J]. J. Mater. Sci. Technol., 2022, 130: 198-207.
Fig. 1. (a-c) Room-temperature XRD patterns of (KxNa1-x)NS-BAZ ceramics with 2θ=22-23°, 31°-32.5°, and 45°-47°; (d) the position, (e) the difference in the position (Δ2θ), and (f) intensity ratio of (200)pc and (002)pc peaks. The diffractions are indexed according to the pseudo-cubic (pc) unit cell.
Fig. 2. (a) ε′-T, (b) ε″-T, and (c) tan δ-T curves of unpoled (colored solid lines) and poled (black dashed lines) (KxNa1-x)NS-BAZ ceramics. The white and green areas respectively indicate the increase and decrease of values after poling, and RT in (b) is the abbreviation of room temperature.
Fig. 5. (a) Composition-dependent Raman spectra of (KxNa1-x)NS-BAZ ceramics; schematic diagrams of (b) A1g(υ1) and (c) Eg(υ2) modes; Raman shift of (d) A1g(υ1) and (e) Eg(υ2) modes. The inset in (a) shows the Lorentz fitting for the Raman spectrum of samples with x=0.35.
Fig. 6. V-PFM and SS-PFM measurements for samples with x=0.35 (a1-a3), x=0.45 (b1-b3), x=0.55 (c1-c3), and x=0.65 (d1-d3); variations of (e) amplitude and (f) VC with x. The scanning area of (a1-d2) is 3 μm × 3 μm.
Fig. 7. (a) P-E loops and (b) S-E curves of samples with x=0.35 measured during first and second electric cycles; (c-h) variations of Pmax, Pr, (Pmax-Pr), Ec, Sp, Sneg, and Spos as a function of x. The data in (c-h) are extracted from Fig. S10.
Fig. 8. (a-c) Variations of d33, kp, εr, tan δ, phase angle, and εrPr of poled samples as a function of x, measured at room temperature. εr and tan δ are measured at f=10 kHz. The phase angle is obtained from Fig. S12.
Fig. 9. Contour maps of normalized Suni (SuniT/SuniRT) measured at different temperatures and electric fields for samples with x=0.35 (a), x=0.50 (b), and x=0.65 (c).
Fig. 10. (a) Schematic diagrams of the lattice structure of KxNa1-xNS-BAZ ceramics with different K/Na ratio; (b) composition-dependent tan δ-T curves of unpoled and poled samples. The Bi3+ ions are off-centered along the <001> directions, and the Na+ ions are off-centered along the <011> directions [58,60]. Note that the off-centering of the Bi3+ and Na+ ions is overstated to offer a better understanding. The real off-centering is much small (e.g., approximately 0.4 ? for the Bi3+ ions and less 0.35 ? for the Na+ ions) [58,60].
[1] | B. Jaffe, Piezoelectric ceramics, Elsevier, 2012. |
[2] | J.-F. Li, Lead-Free Piezoelectric Materials, John Wiley & Sons, 2021. |
[3] |
L. Jiang, Y. Yang, Y. Chen, Q. Zhou, Nano Energy 77 (2020) 105131.
DOI URL |
[4] | M.J. McFarland, M.E. Hauer, A. Reuben, Proc. Natl. Acad. Sci. U. S. A. 119 (11) (2022) e2118631119. |
[5] |
S. Zhang, B. Mali c, J.-F. Li, J. Rödel, J. Mater. Res. 36 (5) (2021) 985-995.
DOI URL |
[6] |
X. Lv, J. Zhu, D. Xiao, X.-xX. Zhang, J. Wu, Chem. Soc. Rev. 49 (3) (2020) 671-707.
DOI URL |
[7] | J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ce-ram. Soc. 35 (6) (2015) 1659-1681. |
[8] |
L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42 (9) (1959) 438-442.
DOI URL |
[9] |
J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115 (7) (2015) 2559-2595.
DOI URL |
[10] | J. Wu, Advances in Lead-free Piezoelectric Materials, Springer, 2018. |
[11] | X. Lv, T. Zheng, C. Zhao, J. Yin, H. Wu, J. Wu, Multiscale Structure Engineer-ing for High-Performance Pb-Free Piezoceramics, Acc Mater. Res. 4 (2022) 461-471. |
[12] |
K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Adv. Mater. 28 (38) (2016) 8519-8523.
DOI URL |
[13] |
S. Feng, D. Xiao, J. Wu, F. Li, M. Xiao, J. Zhu, J. Electroceram. 34 (2) (2015) 142-149.
DOI URL |
[14] |
Y. Chang, Z. Yang, D. Ma, Z. Liu, Z. Wang, J. Appl. Phys. 105 (5) (2009) 054101.
DOI URL |
[15] |
J. Hao, W. Bai, B. Shen, J. Zhai, J. Alloys Compd. 534 (2012) 13-19.
DOI URL |
[16] | M. Waqar, H. Wu, J. Chen, K. Yao, J. Wang, Adv. Mater. 99 (2021) 2106845. |
[17] |
X. Lv, J. Zhang, Y. Liu, F. Li, X.-xX. Zhang, J. Wu, ACS Appl. Mater. Interfaces 12 (35) (2020) 39455-39461.
DOI URL |
[18] |
S.-hh. Go, D.-S. Kim, J.-mm. Eum, H.-ss. Shin, S.-J. Chae, S.-W. Kim, E.-J. Kim, J.-U. Woo, S. Nahm, J. Alloys Compd. 889 (2021) 161817.
DOI URL |
[19] | R.D. Shannon, Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystal-logr. 32 (5) (1976) 751-767. |
[20] |
H. Liu, P. Veber, A. Zintler, L. Molina-Luna, D. Rytz, M. Maglione, J. Koruza, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 (9) (2018) 1508-1516.
DOI URL |
[21] |
H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, Appl. Phys. Lett. 91 (20) (2007) 202907.
DOI URL |
[22] |
B. Wu, J. Ma, Q. Gou, W. Wu, M. Chen, J. Am. Ceram. Soc. 103 (3) (2020) 1698-1708.
DOI URL |
[23] |
W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, Adv. Electron. Mater. 5 (12) (2019) 1900570.
DOI URL |
[24] |
F. Rubio-Marcos, J.F. Fernandez, D.A. Ochoa, J.E. García, R.E. Rojas-Hernandez, M. Castro, L. Ramajo, J. Eur. Ceram. Soc. 37 (11) (2017) 3501-3509.
DOI URL |
[25] |
H. Jia, J. Chen, J. Eur. Ceram. Soc. 41 (4) (2021) 2443-2449.
DOI URL |
[26] |
Y. Qin, J. Zhang, W. Yao, C. Lu, S. Zhang, ACS Appl. Mater. Interfaces 8 (11) (2016) 7257-7265.
DOI URL |
[27] |
X. Lv, J. Wu, X.-xX. Zhang, Chem. Eng. J. 402 (2020) 126215.
DOI URL |
[28] | A.A. Bokov, Z.-G. Ye, Reentrant Phenomena in Relaxors, Nanoscale Ferro-electrics and Multiferroics (2016) 729-764. |
[29] |
V.V. Shvartsman, D.C. Lupascu, J. Am. Ceram. Soc. 95 (1) (2012) 1-26.
DOI URL |
[30] | K. Dey, A. Ahad, K. Gautam, A. Tripathy, S.S. Majid, S. Francoual, C. Richter, M.N. Singh, A. Sagdeo, E. Welter, N. Vittayakorn, V.G. Sathe, R. Rawat, D.K. Shukla, Phys. Rev. B 103 (10) (2021) L100205. |
[31] |
G.D. Adhikary, D.K. Khatua, A. Senyshyn, R. Ranjan, Phys. Rev. B 99 (17) (2019) 174112.
DOI URL |
[32] |
B.N. Rao, R. Datta, S.S. Chandrashekaran, D.K. Mishra, V. Sathe, A. Senyshyn, R. Ranjan, Phys. Rev. B 88 (22) (2013) 224103.
DOI URL |
[33] |
Y. Zhang, J. Tian, L. Li, Z. Gui, J. Mater. Sci: Mater. Electron. 11 (4) (2000) 347-350.
DOI URL |
[34] |
P. Yadav, S. Sharma, N.P. Lalla, J. Appl. Phys. 121 (18) (2017) 184101.
DOI URL |
[35] |
F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z.G. Ye, J. Luo, T.R. Shrout, L.Q. Chen, Nat. Commun. 7 (2016) 13807.
DOI URL |
[36] |
Y. Liu, Z. Xu, L. Liu, F. Li, J. Appl. Phys. 126 (12) (2019) 124102.
DOI URL |
[37] |
A. Cui, Y. Ye, L. Zheng, K. Jiang, L. Zhu, L. Shang, Y. Li, Z. Hu, J. Chu, Phys. Rev. B 100 (2) (2019) 024102.
DOI URL |
[38] |
K.-i. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44 (9S) (2005) 7064.
DOI URL |
[39] |
A. Cui, X. Cao, Y. Ye, K. Jiang, L. Zhu, M. Jiang, G. Rao, Y. Li, Z. Hu, J. Chu, Phys. Rev. B 102 (21) (2020) 214102.
DOI URL |
[40] |
F. Rubio-Marcos, M. Banares, J. Romero, J. Fernandez, J. Raman Spectrosc. 42 (4) (2011) 639-643.
DOI URL |
[41] |
M.-H. Zhang, C. Hu, Z. Zhou, H. Tian, H.-C. Thong, Y.X. Liu, X.-Y. Xu, X.-Q. Xi, J.-F. Li, K. Wang, J. Adv. Ceram. 9 (2) (2020) 204-209.
DOI URL |
[42] |
X. Lv, X.-xX. Zhang, J. Wu, J. Mater. Chem. A 8 (20) (2020) 10026-10073.
DOI URL |
[43] |
H. Ye, F. Yang, Z. Pan, D. Hu, X. Lv, H. Chen, F. Wang, J. Wang, P. Li, J. Chen, J. Liu, J. Zhai, Acta Mater. 203 (2021) 116484.
DOI URL |
[44] |
Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Y. Shur, Y. Feng, Z. Xu, X. Wei, Nano Energy 67 (2020) 104264.
DOI URL |
[45] | Y. Lin, D. Li, M. Zhang, S. Zhan, Y. Yang, H. Yang, Q. Yuan, ACS Appl. Mater. Interfaces 11 (40) (2019) 36 824-36 830. |
[46] |
J. Fu, R. Zuo, Acta Mater. 195 (2020) 571-578.
DOI URL |
[47] |
J. Fu, H. Qi, A. Xie, A. Tian, R. Zuo, Acta Mater. 215 (2021) 117100.
DOI URL |
[48] |
H. Qi, A. Xie, J. Fu, R. Zuo, Acta Mater. 208 (2021) 116710.
DOI URL |
[49] |
J. Fu, R. Zuo, Acta Mater. 61 (10) (2013) 3687-3694.
DOI URL |
[50] |
X. Lv, J. Wu, J. Mater. Chem. C 7 (7) (2019) 2037-2048.
DOI URL |
[51] |
C. Zhao, B. Wu, K. Wang, J.-F. Li, D. Xiao, J. Zhu, J. Wu, J. Mater. Chem. A 6 (46) (2018) 23736-23745.
DOI URL |
[52] |
T. Zheng, J. Wu, Acta Mater. 182 (2020) 1-9.
DOI URL |
[53] |
T.W. Surta, T.A. Whittle M.A. Wright, H. Niu, J. Gamon, Q.D. Gibson, L.M. Daniels, W.J. Thomas, M. Zanella, P.M. Shepley, Y. Li, A. Goetzee-Barral, A.J. Bell, J. Alaria, J.B. Claridge, M.J. Rosseinsky, One Site, Two Cations, J. Am. Chem. Soc. 143 (3) (2021) 1386-1398.
DOI URL |
[54] |
A. Singh, C. Moriyoshi, Y. Kuroiwa, D. Pandey, Appl. Phys. Lett. 103 (12) (2013) 121907.
DOI URL |
[55] |
I. Levin, F. Yang, R. Maier, W.J. Laws, D.S. Keeble, G. Cibin, D.C. Sinclair, Adv. Funct. Mater. 30 (30) (2020) 2001840.
DOI URL |
[56] |
S. Pal, A.B. Swain, N V S, P. Murugavel, J. Phys.: Condens. Matter 32 (36) (2020) 365401.
DOI URL |
[57] |
S. Kim, H. Nam, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, Scr. Mater. 205 (2021) 114176.
DOI URL |
[58] |
I. Levin, V. Krayzman, G. Cibin, M.G. Tucker, M. Eremenko, K. Chapman, R.L. Paul, Sci. Rep. 7 (1) (2017) 15620.
DOI PMID |
[59] |
F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, Nat. Mater. 17 (4) (2018) 349-354.
DOI URL |
[60] |
Y. Kuroiwa, S. Kim, I. Fujii, S. Ueno, Y. Nakahira, C. Moriyoshi, Y. Sato, S. Wada, Commun. Mater. 1 (1) (2020) 71.
DOI URL |
[61] |
F. Rubio-Marcos, R. López-Juárez, R.E. Rojas-Hernandez, A. del Campo, N. Razo-Perez, J.F. Fernandez, ACS Appl. Mater. Interfaces 7 (41) (2015) 23080-23088.
DOI URL |
[62] |
P. Li, Z. Fu, F. Wang, Y. Huan, Z. Zhou, J. Zhai, B. Shen, S. Zhang, Acta Mater. 199 (2020) 542-550.
DOI URL |
[1] | Zhengran Chen, Ruihong Liang, Chi Zhang, Zhiyong Zhou, Yuchen Li, Zhenming Liu, Xianlin Dong. High-performance and high-thermally stable PSN-PZT piezoelectric ceramics achieved by high-temperature poling [J]. J. Mater. Sci. Technol., 2022, 116(0): 238-245. |
[2] | Nan Zhang, Xiang Lv, Xi-xiang Zhang, Jing Lyu, Shuo-Wang Yang, Jiagang Wu. Low-temperature dielectric relaxation associated with NbO6 octahedron distortion in antimony modified potassium sodium niobate ceramics [J]. J. Mater. Sci. Technol., 2022, 115(0): 189-198. |
[3] | Yunwen Liao,Dingquan Xiao. Synthesis and Electrical Properties of Li-modified Bi0:5Na0:5TiO3-BaTiO3 Lead-free Piezoelectric Ceramics [J]. J Mater Sci Technol, 2009, 25(06): 777-780. |
[4] | Q.-C. He. Variational and Microstructure-Independent Relations for Piezoelectric Composites [J]. J Mater Sci Technol, 2004, 20(Supl.): 69-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||