J. Mater. Sci. Technol. ›› 2022, Vol. 130: 193-197.DOI: 10.1016/j.jmst.2022.05.018
• Letter • Previous Articles Next Articles
Di Wanga,b, Pruch Kijklab,c, Mazen A. Salehd, Sith Kumseraneec, Suchada Punprukc, Tingyue Gub,*()
Revised:
2022-04-10
Published:
2022-12-10
Online:
2022-12-07
Contact:
Tingyue Gu
About author:
* E-mail address: gu@ohio.edu (T. Gu)Di Wang, Pruch Kijkla, Mazen A. Saleh, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Tafel scan schemes for microbiologically influenced corrosion of carbon steel and stainless steel[J]. J. Mater. Sci. Technol., 2022, 130: 193-197.
Fig. 1. Four different PDP scan schemes for Tafel analysis: (A) Two half-scans starting from OCP using two replicate WEs (used as standard reference), or using a single WE, (B) continuous upward scan using a single WE, and (C) continuous downward scan using a single WE.
Electrode | Electrode and scan number | Scan pattern and direction |
---|---|---|
A | A1+B1 | Orthodox half-scans with 2 WEs (A1 cathodic + B1 anodic) |
A1+A2 | Half-scans with 1 WE | |
A3+A4 | Half-scans with 1 WE (repeat) | |
A5 | Continuous upward scan | |
B | B1+B2 | Half-scans with 1 WE |
B3+B4 | Half-scans with 1 WE (repeat) | |
B5 | Continuous downward scan | |
C | C1 | Continuous upward scan |
C2 | Continuous upward scan (repeat) | |
C3 | Continuous downward | |
C4+C5 | Half-scans with 1 WE |
Table 1. Tafel scan schemes and schedules performed after 3-d incubation and 7-d incubation using three replicate WEs in three replicate glass cells.
Electrode | Electrode and scan number | Scan pattern and direction |
---|---|---|
A | A1+B1 | Orthodox half-scans with 2 WEs (A1 cathodic + B1 anodic) |
A1+A2 | Half-scans with 1 WE | |
A3+A4 | Half-scans with 1 WE (repeat) | |
A5 | Continuous upward scan | |
B | B1+B2 | Half-scans with 1 WE |
B3+B4 | Half-scans with 1 WE (repeat) | |
B5 | Continuous downward scan | |
C | C1 | Continuous upward scan |
C2 | Continuous upward scan (repeat) | |
C3 | Continuous downward | |
C4+C5 | Half-scans with 1 WE |
Fig. 2. Actual PDP curves for (A) Electrode A, (B) replicate using Electrode B, and (C) replicate using Electrode C scans for C1018 carbon steel MIC by D. ferrophilus at 3-d incubation.
Electrode and scan number | βa (V/dec) | βc (V/dec) | Ecorr (V) vs. SCE | icorr (μA/cm2) | icorr deviation |
---|---|---|---|---|---|
Standard reference | 0.046 | ‒0.295 | ‒0.538 | 416 | / |
A1+A2 | 0.054 | ‒0.271 | ‒0.538 | 410 | ‒1.5% |
A3+A4 | 0.049 | ‒0.230 | ‒0.543 | 434 | 4.3% |
A5 (upward) | 0.106 | ‒0.038 | ‒0.690 | 206 | ‒61% |
B1+B2 | 0.093 | ‒0.184 | ‒0.535 | 432 | 3.8% |
B3+B4 | 0.104 | ‒0.162 | ‒0.538 | 433 | 4.1% |
B5 (downward) | 0.039 | ‒0.082 | ‒0.455 | 216 | ‒48% |
C1 (upward) | 0.050 | −0.104 | ‒0.653 | 118 | ‒72% |
C2 (upward) | 0.068 | −0.072 | ‒0.666 | 87.3 | ‒79% |
C3 (downward) | 0.028 | −0.069 | ‒0.536 | 129 | ‒69% |
C4+C5 | 0.142 | −0.288 | ‒0.575 | 228 | ‒45% |
Table 2. Tafel parameters for C1018 carbon steel in D. ferrophilus broth at 3-d incubation.
Electrode and scan number | βa (V/dec) | βc (V/dec) | Ecorr (V) vs. SCE | icorr (μA/cm2) | icorr deviation |
---|---|---|---|---|---|
Standard reference | 0.046 | ‒0.295 | ‒0.538 | 416 | / |
A1+A2 | 0.054 | ‒0.271 | ‒0.538 | 410 | ‒1.5% |
A3+A4 | 0.049 | ‒0.230 | ‒0.543 | 434 | 4.3% |
A5 (upward) | 0.106 | ‒0.038 | ‒0.690 | 206 | ‒61% |
B1+B2 | 0.093 | ‒0.184 | ‒0.535 | 432 | 3.8% |
B3+B4 | 0.104 | ‒0.162 | ‒0.538 | 433 | 4.1% |
B5 (downward) | 0.039 | ‒0.082 | ‒0.455 | 216 | ‒48% |
C1 (upward) | 0.050 | −0.104 | ‒0.653 | 118 | ‒72% |
C2 (upward) | 0.068 | −0.072 | ‒0.666 | 87.3 | ‒79% |
C3 (downward) | 0.028 | −0.069 | ‒0.536 | 129 | ‒69% |
C4+C5 | 0.142 | −0.288 | ‒0.575 | 228 | ‒45% |
Electrode and scan number | C1018 in D. ferrophilus broth at 7-d incubation | 316 SS in D. ferrophilus broth at 3-d incubation | 316 SS in D. ferrophilus broth at 7-d incubation | C1018 in aerobic P. aeruginosa broth at 3-d incubation | C1018 in aerobic P. aeruginosa broth at 7-d incubation |
---|---|---|---|---|---|
A1+A2 | ‒1.6% | ‒9.1% | ‒29% | ‒7.9% | ‒15% |
A3+A4 | 4.7% | ‒3.0% | ‒27% | ‒20% | ‒18% |
A5 (upward) | ‒56% | ‒39% | ‒79% | ‒75% | ‒75% |
B1+B2 | 25% | ‒15% | ‒55% | 12% | ‒13% |
B3+B4 | 23% | ‒4.5% | ‒52% | ‒9.4% | ‒17% |
B5 (downward) | ‒48% | ‒86% | ‒76% | ‒73% | ‒67% |
C1 (upward) | ‒61% | ‒74% | ‒86% | ‒62% | ‒54% |
C2 (upward) | ‒63% | ‒69% | ‒78% | ‒64% | ‒56% |
C3 (downward) | ‒46% | ‒84% | ‒84% | ‒43% | ‒62% |
C4+C5 | ‒10% | ‒39% | ‒61% | ‒9.4% | 14% |
Table 3. icorr deviations for C1018 in D. ferrophilus broth at 7-d incubation, 316 SS in D. ferrophilus broth at 3-d incubation and 7-d incubation, and C1018 in aerobic P. aeruginosa broth at 3-d incubation and 7-d incubation.
Electrode and scan number | C1018 in D. ferrophilus broth at 7-d incubation | 316 SS in D. ferrophilus broth at 3-d incubation | 316 SS in D. ferrophilus broth at 7-d incubation | C1018 in aerobic P. aeruginosa broth at 3-d incubation | C1018 in aerobic P. aeruginosa broth at 7-d incubation |
---|---|---|---|---|---|
A1+A2 | ‒1.6% | ‒9.1% | ‒29% | ‒7.9% | ‒15% |
A3+A4 | 4.7% | ‒3.0% | ‒27% | ‒20% | ‒18% |
A5 (upward) | ‒56% | ‒39% | ‒79% | ‒75% | ‒75% |
B1+B2 | 25% | ‒15% | ‒55% | 12% | ‒13% |
B3+B4 | 23% | ‒4.5% | ‒52% | ‒9.4% | ‒17% |
B5 (downward) | ‒48% | ‒86% | ‒76% | ‒73% | ‒67% |
C1 (upward) | ‒61% | ‒74% | ‒86% | ‒62% | ‒54% |
C2 (upward) | ‒63% | ‒69% | ‒78% | ‒64% | ‒56% |
C3 (downward) | ‒46% | ‒84% | ‒84% | ‒43% | ‒62% |
C4+C5 | ‒10% | ‒39% | ‒61% | ‒9.4% | 14% |
[1] |
P. Kannan, S.S. Su, M.S. Mannan, H. Castaneda, S. Vaddiraju, Ind. Eng. Chem. Res. 57 (2018) 13895-13922.
DOI URL |
[2] |
S.J. Salgar-Chaparro, K. Lepkova, T. Pojtanabuntoeng, A. Darwin, LL. Machuca, Corros. Sci. 169 (2020) 108595.
DOI URL |
[3] |
S.P. Kotu, M.S. Mannan, A. Jayaraman, Int. Biodeterior. Biodegrad. 144 (2019)104722.
DOI URL |
[4] |
D. Wang, P. Kijkla, M.E. Mohamed, M.A. Saleh, S. Kumseranee, S. Punpruk, T. Gu, Bioelectrochemistry 142 (2021) 107920.
DOI URL |
[5] |
M. Sharma, H. Liu, S. Chen, F. Cheng, G. Voordouw, L. Gieg, Sci. Rep. 8 (2018)16620.
DOI URL |
[6] |
Y. Lekbach, Y. Dong, Z. Li, D. Xu, S. EI Abed, Y. Yi, L. Li, S. Ilbnsouda Koraichi, T. Sun, F. Wang, Corros. Sci. 157 (2019) 98-108.
DOI |
[7] |
D. Wang, J. Liu, R. Jia, W. Dou, S. Kumseranee, S. Punpruk, X. Li, T. Gu, Corros. Sci. 177 (2020) 108993.
DOI URL |
[8] |
R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu, T. Gu, Corros. Sci. 130 (2018) 1-11.
DOI URL |
[9] |
R. Jia, D. Wang, P. Jjin, T. Unsal, D. Yang, J. Yang, D. Xu, T. Gu, Corros. Sci. 153(2019) 127-137.
DOI |
[10] |
J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu, H. Liu, Corros. Sci. 150 (2019) 296-308.
DOI URL |
[11] |
X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du, X. Li, Corros. Sci. 173 (2020) 108746.
DOI URL |
[12] |
H. Qian, L. Ma, D. Zhang, Z. Li, L. Huang, Y. Lou, C. Du, J. Mater. Sci. Technol. 46 (2020) 12-20.
DOI URL |
[13] |
I.B. Obot, I.B. Onyeachu, J. Mol. Liq. 249 (2018) 83-96.
DOI URL |
[14] |
H.-. Y. Tang, C. Yang, T. Ueki, C.C. Pittman, D. Xu, TL. Woodard, D.E. Holmes, T. Gu, F. Wang, D.R. Lovley, ISME J. 15 (2021) 3084-3093.
DOI URL |
[15] |
P.A. Rasheed, K.A. Jabbar, K. Rasool, R.P. Pandey, M.H. Sliem, M. Helal, A. Samara, A.M. Abdullah, K.A. Mahmoud, Corros. Sci. 148 (2019) 397-406.
DOI |
[16] |
B. Wei, J. Xu, Q. Fu, Q Qin, Y. Bai, C. Sun, C. Wang, Z. Wang, W. Ke, J. Mater. Sci. Technol. 87 (2021) 1-17.
DOI URL |
[17] |
Y. jin, Z. Li, E. Zhou, Y. Lekbach, D. Xu, S. Jiang, F. Wang, Electrochim. Acta 316 (2019) 93-104.
DOI URL |
[18] |
W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen, T. Gu, Corros. Sci. 150 (2019) 258-267.
DOI URL |
[19] |
Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu, F. Wang, Electrochem. Commun. 94 (2018) 9-13.
DOI URL |
[20] | M. Stern, Corrosion 14 (1958) 60-64. |
[21] |
R.L. LeRoy, J. Electrochem. Soc. 124 (1977) 1006.
DOI URL |
[22] | J. Tkacz, J. Minda, S. Fintova, J. Wasserbauer, Materials 9 (2016) 925 (Basel). |
[23] |
D. Wang, T. Unsal, S. Kumseranee, S. Punpruk, M.E. Mohamed, M.A. Saleh, T. Gu, Int. Biodeterior. Biodegrad. 157 (2021) 105160.
DOI URL |
[24] |
L. Huang, Y. Huang, Y. Lou, H. Qian, D. Xu, L. Ma, C. Jiang, D. Zhang, Corros. Sci. 164 (2020) 108355.
DOI URL |
[25] |
H. Mehta, G. Kaur, G.R. Chaudhary, N. Prabhakar, Corros. Sci. 179 (2021) 109101.
DOI URL |
[26] | Z. Cai, J. Xu, B. Wei, C. Sun, Int. J. Press. Vessels Pip. 195 (2022) 104599. |
[27] | BJ. Little, P. A. Wagner, J. O. Bockris, B. E. Conway, R. E. White, Modern Aspects of Electrochemistry, Springer, New York, 2002, pp. 205-246. |
[28] | V. Milovan, B. Pesic, N. Strbac, I. Mihajlovic, M. Sokic, Int. J. Electrochem. Sci. 7 (2012) 2487-2503. |
[29] | E. McCafferty, Introduction to Corrosion Science, Springer, New York, 2010. |
[30] | F. Mansfeld, in: M.G. Fontana, R.W. Staehle (Eds.), Advances in Corrosion Sci-ence and Technology, 6, Springer, New York, 1976, pp. 163-262. |
[31] |
G. Pavanello, M. Faimali, M. Pittore, A. Mollica, A. Mollica, A. Mollica, Water Res. 45 (2011) 1651-1658.
DOI PMID |
[32] |
A. Khan, A. Qurashi, W. Badeghaish, M.N. Noui-Mehidi, M.A. Aziz, Sensors 20 (2020) 6583.
DOI URL |
[33] | T. Gu, D. Wang, Y. Lekbach, D. Xu, Curr. Opin. Electrochem. 29 (2021) 100763. |
[34] | E. Zhou, Y. Lekbach, T. Gu, D. Xu, Curr. Opin. Electrochem. 31 (2022) 100830. |
[35] |
Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol. 34 (2018) 1713-1718.
DOI URL |
[36] |
X. Zhang, Z. Jiang, Z. Yao, Y. Song, Z. Wu, Corros. Sci. 51 (2009) 581-587.
DOI URL |
[37] |
D. Wang, R. Jia, S. Kumseranee, S. Punpruk, T. Gu, Eng. Fail. Anal. 122 (2021) 105275.
DOI URL |
[38] |
U. Eduok, E. Ohaeri, J. Szpunar, Mater. Sci. Eng. C 105 (2019) 110095.
DOI URL |
[39] |
P. Zhang, D. Xu, Y. Li, K. Yang, T. Gu, Bioelectrochemistry 101 (2015) 14-21.
DOI URL |
[40] |
B. Zheng, K. Li, H. Liu, T. Gu, Ind. Eng. Chem. Res. 53 (2014) 48-54.
DOI URL |
[41] |
L. Chen, W. Liu, B. Dong, Y. Zhao, T. Zhang, Y. Fan, W. Yang, Corros. Sci. 193 (2021) 109903.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||