J. Mater. Sci. Technol. ›› 2022, Vol. 120: 99-107.DOI: 10.1016/j.jmst.2021.11.065
• Research Article • Previous Articles Next Articles
Jia Lia, Baobin Xiea, Quanfeng Heb, Bin Liuc, Xin Zenga, Peter K. Liawd, Qihong Fanga,*(), Yong Yangb,*(
), Yong Liuc,*(
)
Received:
2021-09-03
Revised:
2021-11-19
Accepted:
2021-11-23
Published:
2022-09-01
Online:
2022-03-02
Contact:
Qihong Fang,Yong Yang,Yong Liu
About author:
yonliu@csu.edu.cn (Y. Liu).Jia Li, Baobin Xie, Quanfeng He, Bin Liu, Xin Zeng, Peter K. Liaw, Qihong Fang, Yong Yang, Yong Liu. Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys[J]. J. Mater. Sci. Technol., 2022, 120: 99-107.
Fig. 1. Flow chart of the machine-learning system for designing the elemental anisotropy factor of CoCrFeMnNi HEA (a). An architecture of BPNN consisting of an input layer, two hidden layers, and one output layer (b).
Fig. 2. The electron backscatter diffraction (EBSD) inverse pole figure (IPF) map of the equiatomic CrMnFeCoNi HEA showing orientations of the loading axes of single-crystal micropillar (a), typical compressive stress-strain curves of single-crystal specimens with same grain and different positions at room temperature (b), and SEM images of the micropillars after the micro-compression tests (c-f).
Fig. 3. The tension model of HEA nano-pilar (a) and the HEA nano-pilar surface for 18 samples (b). Each element is distributed along the height direction (c). Radial distribution function of HEA (d).
Fig. 4. The atomic modeling of nano-pillar subjected to uniaxial tension, and stress vs. strain for different element distributions (a). Ultimate strength and elongation to failure (b).
Fig. 5. Deformation behavior of HEA nano-pillar with different chemical heterogeneities in samples A (a-c) and B (d-f). The surface topography and element distribution (a, d), microstructural evolution (b, e), and dislocation evolution (c, f). Dislocation-mechanism-dominated plastic deformation (a-c), and deformation-twinning-mechanism dominated plastic deformation (d-f).
Fig. 6. The elemental distribution of the HEA along the perimeter direction (a, b). The elemental anisotropy factor in samples A and B (c, d), where each pixel represents 1 × 1 nm2.
Fig. 7. Initial structure, intrinsic stacking fault, extrinsic stacking fault, and three-layer twin of HEA (a, b). The atoms of HEA are colored according to the atom type (a), and according to the CNA (b). Generalized stacking fault energy of the CoCrFeMnNi HEA (c). The ux stands for the moving distance along the special slip plane, where the blue arrows indicate different slip layers in (b). The initial structure corresponds to the moving distance of 0.0, the intrinsic stacking fault corresponds to the moving distance of 1.0, the extrinsic stacking fault corresponds to the moving distance of 2.0, and three-layer twin corresponds to the moving distance of 3.0.
Fig. 8. The MSE between predicted and target values in the training data, the validation data, testing data with the increase of the training epochs (a). The instances falling into different error ranges in the form of histogram (b).
Fig. 9. The predicted values from BPNN as the estimation function of the values from MD simulations for the training data, the validation data, the testing data, and all data.
Fig. 10. With the increased elemental anisotropy factor, the trade-off relationship between the ultimate strength (a) and elongation and the product of the ultimate strength and elongation (b). The comparison between CoCrFeMnNi HEAs with different elemental anisotropy factors, where red asterisk represent the optimal comprehensive performance (c).
[1] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI URL PMID |
[2] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227.
DOI URL |
[3] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI URL PMID |
[4] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[5] |
Q. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, P.K. Liaw, Int. J. Plast. 114 (2019) 161-173.
DOI URL |
[6] |
L.M. Du, L.W. Lan, S. Zhu, H. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao, J. Mater. Sci. Technol. 35 (2019) 917-925.
DOI URL |
[7] | K. Ming, L. Li, Z. Li, X. Bi, J. Wang, Sci. Adv. 5 (2019) 0639. |
[8] |
T.M. Smith, B.D. Esser, N. Antolin, A. Carlsson, R.E.A. Williams, A. Wessman, M.J. Mills, Nat. Commun. 7 (2016) 13434.
DOI URL PMID |
[9] |
M. Calcagnotto, D. Ponge, D. Raabe, Metall. Mater. Trans. A 43 (2012) 37-46.
DOI URL |
[10] |
J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-1296.
DOI URL PMID |
[11] |
Q. Pan, H. Zhou, Q. Lu, H. Gao, L. Lu, Nature 551 (2017) 214.
DOI URL |
[12] |
Y.H. Liu, T. Fujita, D.P.B. Aji, M. Matsuura, M.W. Chen, Nat. Commun. 5 (2014) 3238.
DOI URL PMID |
[13] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI URL |
[14] |
J. Li, Q. Fang, P.K. Liaw, Adv. Eng. Mater. 23 (2021) 2001044.
DOI URL |
[15] |
P. Singh, A.V. Smirnov, D.D. Johnson, Phys. Rev. B 91 (2015) 224204.
DOI URL |
[16] |
Y. Ma, Q. Wang, C. Li, L.J. Santodonato, M. Feygenson, C. Dong, P.K. Liaw, Scr. Mater. 144 (2018) 64-68.
DOI URL |
[17] |
A. Heczel, M. Kawasaki, D. Ugi, J.I. Jang, T.G. Langdon, J. Gubicza, Mater. Sci. Eng. A 721 (2018) 165-167.
DOI URL |
[18] |
L. Patriarca, A. Ojha, H. Sehitoglu, Y.I. Chumlyakov, Scr. Mater. 112 (2016) 54-57.
DOI URL |
[19] |
S. Maiti, W. Steurer, Acta Mater. 106 (2016) 87-97.
DOI URL |
[20] |
R.P. Zhang, S.T. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581 (2020) 283-287.
DOI URL |
[21] |
L. Zhang, Y. Xiang, J. Han, D.J. Srolovitz, Acta Mater. 166 (2019) 424-434.
DOI URL |
[22] |
W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.J. Lee, npj Comput. Mater. 4 (2018) 1.
DOI URL |
[23] |
S.Y. Lee, S. Byeon, H.S. Kim, H. Jin, S. Lee, Mater. Des. 197 (2021) 109260.
DOI URL |
[24] |
C. Wang, H. Fu, L. Jiang, D. Xue, J. Xie, npj Comput. Mater. 5 (2019) 1-8.
DOI URL |
[25] |
L. Li, B. Xie, Q. Fang, J. Li, Metall. Mater. Trans. A 52 (2) (2021) 439-448.
DOI URL |
[26] |
D.Q. Zhao, S.P. Pan, Y. Zhang, P.K. Liaw, J.W. Qiao, Appl. Phys. Lett. 118 (2021) 231904.
DOI URL |
[27] |
Y.V. Krishna, U.K. Jaiswal, M.R. Rahul, Scr. Mater. 197 (2021) 113804.
DOI URL |
[28] |
Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, Y. Yang, npj Comput. Mater. 5 (2019) 1-9.
DOI URL |
[29] | A.K. Jain, K. Mao, K.M. Mohiuddin, Computer 29 (1996) 31-44. |
[30] |
J. Li, B. Xie, Q. Fang, B. Liu, Y. Liu, P.K. Liaw, J. Mater. Sci. Technol. 68 (2021) 70-75.
DOI URL |
[31] |
Z.W. Shan, R. Mishra, S.A. Syed, O.L. Warren, A.M. Minor, Nat. Mater. 7 (2008) 115-119.
URL PMID |
[32] |
K. Arora, K. Kishida, K. Tanaka, H. Inui, Acta Mater. 138 (2017) 119.
DOI URL |
[33] |
D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy, Acta Mater. 53 (2005) 4065.
DOI URL |
[34] | Q.Q. Ding, Y. Zhang, X. Chen, X.Q. Fu, D.K. Chen, S.J. Chen, L. Gu, F. Wei, H.B. Bei, Y.F. Gao, M.R. Wen, J.X. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Na- ture 574 (2019) 223-227. |
[35] |
J. Peng, L. Li, F. Li, B. Liu, S. Zherebtsov, Q. Fang, J. Li, N. Stepanov, Y. Liu, F. Liu, P.K. Liaw, Int. J. Plast. 145 (2021) 103073.
DOI URL |
[36] | L.J Santodonato, Y. Zhang, M. Feygenson, C.M Parish, M.C. Gao, R.J. Weber, P.K. Liaw, Nat. Commun. 6 (2015) 1-13. |
[37] |
H. He, M. Naeem, F. Zhang, Y. Zhao, S. Harjo, T. Kawasaki, X.L. Wang, Nano Lett. 21 (2021) 1419-1426.
DOI URL |
[38] |
J. Li, H. Chen, Q.H. Fang, C. Jiang, Y. Liu, P.K. Liaw, Int. J. Plast. 133 (2020) 102819.
DOI URL |
[39] |
Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, H. Gao, Nat. Commun. 5 (2014) 3580.
DOI URL |
[40] |
Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10 (2019) 3563.
DOI URL |
[41] |
L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, Acta Mater. 122 (2017) 11-18.
DOI URL |
[42] |
J.M. Cowley, Phys. Rev. 77 (1950) 669-675.
DOI URL |
[43] |
Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143-10148.
DOI URL |
[44] |
E.B. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52 (2004) 2507-2519.
DOI URL |
[45] | P. Anderson, J. Hirth, J. Lothe, Theory of Dislocations, Cambridge University Press, 2017. |
[46] | R. Roelofs, V. Shankar, B. Recht, S. Fridovich-Keil, M. Hardt, J. Miller, L. Schmidt, Adv. Neural Inf. Process. Syst. 32 (2019) 9179. |
[47] | N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach. Learn. Res. 15 (2014) 1929. |
[48] |
S. Zhou, K. Zhang, Y. Wang, J.F. Gu, Y.H. Rong, Mater. Sci. Eng. A 528 (2011) 8006-8012.
DOI URL |
[1] | Quanqing Zeng, Kefu Gan, Fei Chen, Dongyao Wang, Songsheng Zeng. Interstitial concentration effects on incipient plasticity and dislocation behaviors of face-centered cubic FeNiCr multicomponent alloys based on nanoindentation [J]. J. Mater. Sci. Technol., 2022, 112(0): 212-221. |
[2] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
[3] | Yunfa Guo, Yan Jin Lee, Yu Zhang, Anastassia Sorkin, Sergei Manzhos, Hao Wang. Effect of a weak magnetic field on ductile-brittle transition in micro-cutting of single-crystal calcium fluoride [J]. J. Mater. Sci. Technol., 2022, 112(0): 96-113. |
[4] | Wensen Huang, Jihua Chen, Hongge Yan, Weijun Xia, Bin Su. High plasticity mechanism of high strain rate rolled Mg-Ga alloy sheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 187-198. |
[5] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[6] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[7] | Mun Sik Jeong, Tak Min Park, Dong-Il Kim, Hidetoshi Fujii, Hye Ji Im, Pyuck-Pa Choi, Seung-Joon Lee, Jeongho Han. Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning [J]. J. Mater. Sci. Technol., 2022, 118(0): 243-254. |
[8] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
[9] | Qi Xue, Tao Hang, Jianghu Liang, Chun-Chao Chen, Yunwen Wu, Huiqin Ling, Ming Li. Nonvolatile resistive memory and synaptic learning using hybrid flexible memristor based on combustion synthesized Mn-ZnO [J]. J. Mater. Sci. Technol., 2022, 119(0): 123-130. |
[10] | C.L. Jia, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Static spheroidization and its effect on superplasticity of fine lamellae in nugget of a friction stir welded Ti-6Al-4V joint [J]. J. Mater. Sci. Technol., 2022, 119(0): 1-10. |
[11] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
[12] | Siyuan Wei, Yakai Zhao, Jae-il Jang, Upadrasta Ramamurty. Rate-dependent mechanical behavior of single-, bi-, twinned-, and poly-crystals of CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 253-264. |
[13] | Nasir Ilyas, Jingyong Wang, Chunmei Li, Hao Fu, Dongyang Li, Xiangdong Jiang, Deen Gu, Yadong Jiang, Wei Li. Controllable resistive switching of STO:Ag/SiO2-based memristor synapse for neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 97(0): 254-263. |
[14] | Siyi Di, Qianqian Wang, Yiyuan Yang, Tao Liang, Jing Zhou, Lin Su, Kuibo Yin, Qiaoshi Zeng, Litao Sun, Baolong Shen. Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1 bulk metallic glass upon cryogenic cycling treatment [J]. J. Mater. Sci. Technol., 2022, 97(0): 20-28. |
[15] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||