J. Mater. Sci. Technol. ›› 2022, Vol. 119: 98-110.DOI: 10.1016/j.jmst.2021.12.033
• Research Article • Previous Articles Next Articles
Qianying Guoa, Zongqing Maa, Zhixia Qiaob, Chong Lia, Teng Zhangc, Jun Lia,*(
), Chenxi Liua,*(
), Yongchang Liua,*(
)
Received:2021-11-16
Revised:2021-12-07
Accepted:2021-12-10
Published:2022-08-20
Online:2022-03-03
Contact:
Jun Li,Chenxi Liu,Yongchang Liu
About author:ycliu@tju.edu.cn (Y. Liu).Qianying Guo, Zongqing Ma, Zhixia Qiao, Chong Li, Teng Zhang, Jun Li, Chenxi Liu, Yongchang Liu. A new type-γ′/γ′′ coprecipitation behavior and its evolution mechanism in wrought Ni-based ATI 718Plus superalloy[J]. J. Mater. Sci. Technol., 2022, 119: 98-110.
| Ni | Cr | Co | Fe | Nb | Mo | Al | Ti | W | C | P | B |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 51.73 | 18.53 | 9.26 | 8.82 | 5.34 | 2.85 | 1.55 | 0.8 | 1.08 | 0.024 | 0.011 | 0.007 |
Table 1. Chemical composition of the explored ATI 718Plus superalloy (wt.%) [3].
| Ni | Cr | Co | Fe | Nb | Mo | Al | Ti | W | C | P | B |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 51.73 | 18.53 | 9.26 | 8.82 | 5.34 | 2.85 | 1.55 | 0.8 | 1.08 | 0.024 | 0.011 | 0.007 |
Fig. 3. Low and high magnification SEM images of γ′/γ′′ coprecipitates after long-term thermal exposure at 705 °C for (a) and (e) 100 h, (b) and (f) 200 h, (c) and (g) 500 h, (d) and (h) 1000 h; (i) and (j) The schematic models of sandwich-type γ′/γ′′ coprecipitate and compact-type γ′/γ′′ coprecipitate.
Fig. 4. Quantitative analysis of γ′ phases after long-term thermal exposure: (a) the size distribution histograms, (b) average size and volume fraction, (c) coarsening behavior according to LSW model and (d) the plot between log (rt) / log (r0) and log t.
| Samples | Volume fraction (%) | Average size (nm) |
|---|---|---|
| 100-LTTE | 33.5 ± 1.1 | 66.6 ± 4.3 |
| 200-LTTE | 35.4 ± 1.3 | 68.4 ± 2.0 |
| 500-LTTE | 38.1 ± 1.6 | 69.9 ± 1.1 |
| 1000-LTTE | 40.3 ± 0.9 | 72.6 ± 0.5 |
Table 2. Specific data of volume fraction and average size of γ′ phases in four 718Plus samples after LTTE heat treatments.
| Samples | Volume fraction (%) | Average size (nm) |
|---|---|---|
| 100-LTTE | 33.5 ± 1.1 | 66.6 ± 4.3 |
| 200-LTTE | 35.4 ± 1.3 | 68.4 ± 2.0 |
| 500-LTTE | 38.1 ± 1.6 | 69.9 ± 1.1 |
| 1000-LTTE | 40.3 ± 0.9 | 72.6 ± 0.5 |
Fig. 5. The microstructure of 705-100 sample: (a) and (b) low and high dark-field TEM (DF-TEM) images showing the γ′ phases. (c) SAED pattern of γ′ phase and (d) bright-field TEM (BF-TEM) image and the corresponding EDS result (the insert). (e) high resolution TEM (HRTEM) images of (e1) γ′ phase and (e2) γ matrix, (f) HAADF-STEM image of γ′ phases and the corresponding EDS mapping results.
Fig. 6. The microstructure of 705-200 sample: (a) and (b) low and high DF-TEM images showing the γ′ phases. (c) SAED pattern of γ′ phase and (d) BF-TEM image and the corresponding EDS result (the insert). (e) HRTEM images of (e1) γ′ phase and (e2) γ matrix, (f) HAADF-STEM image of γ′ phases and the corresponding EDS line-scan results: (f1) Ni, Al, Ti, Nb and (f2) Cr, Fe, Co.
Fig. 7. The microstructure of 705-500 sample: (a) and (b) low and high resolution DF-TEM images showing the γ′ phases (the phases circled by blue oval are γ′′ phases). (c) SAED pattern of γ′ phase and (d) BF-TEM image (the phases circled by blue oval are γ′′ phases) and the corresponding EDS result (the insert). (e) and (f) HRTEM images and the corresponding FFT patterns of γ matrix, γ′ phase and γ′′ phase. (g) HAADF-STEM image of γ′ and γ′′ phases and the corresponding EDS line-scan results: (g1) Ni, Al, Ti, Nb and (g2) Cr, Fe, Co.
Fig. 8. The microstructure of 705-1000 sample: (a) and (b) low and high resolution DF-TEM images showing the γ′ phases (the phases circled by blue oval are γ′′ phases). (c) SAED pattern of γ′ phase and (d) BF-TEM image (the phases circled by blue oval are γ′′ phases) and the corresponding EDS result (the insert). (e) HRTEM image of γ′ and γ′′ phase, (f) HAADF-STEM image of γ′ and γ′′ phases and the corresponding EDS mapping results, (g) HAADF-STEM image and EDS line-scan profile of (g1) Ni, Al, Ti, Nb and (g2) Cr, Fe, Co.
| Sample | Ni | Cr | Co | Fe | Al | Ti | Nb |
|---|---|---|---|---|---|---|---|
| 100-LTTE | 69.79 ± 0.78 | 2.35 ± 0.01 | 3.83 ± 0.92 | 1.60 ± 0.15 | 4.98 ± 0.51 | 3.50 ± 0.09 | 14.07 ± 0.28 |
| 200-LTTE | 74.13 ± 0.08 | 1.33 ± 0.05 | 3.57 ± 0.20 | 1.67 ± 0.17 | 5.39 ± 0.05 | 2.75 ± 0.09 | 11.13 ± 0.12 |
| 500-LTTE | 72.42 ± 0.17 | 1.82 ± 0.16 | 4.24 ± 0.38 | 1.79 ± 0.08 | 5.03 ± 0.06 | 2.72 ± 0.43 | 11.96 ± 0.07 |
| 1000-LTTE | 73.38 ± 0.35 | 1.19 ± 0.14 | 4.13 ± 0.12 | 1.72 ± 0.12 | 4.56 ± 0.04 | 3.07 ± 0.14 | 12.10 ± 0.14 |
Table 3. The average chemical composition (at. %) of γ′ phase in four 718Plus samples after LTTE heat treatments.
| Sample | Ni | Cr | Co | Fe | Al | Ti | Nb |
|---|---|---|---|---|---|---|---|
| 100-LTTE | 69.79 ± 0.78 | 2.35 ± 0.01 | 3.83 ± 0.92 | 1.60 ± 0.15 | 4.98 ± 0.51 | 3.50 ± 0.09 | 14.07 ± 0.28 |
| 200-LTTE | 74.13 ± 0.08 | 1.33 ± 0.05 | 3.57 ± 0.20 | 1.67 ± 0.17 | 5.39 ± 0.05 | 2.75 ± 0.09 | 11.13 ± 0.12 |
| 500-LTTE | 72.42 ± 0.17 | 1.82 ± 0.16 | 4.24 ± 0.38 | 1.79 ± 0.08 | 5.03 ± 0.06 | 2.72 ± 0.43 | 11.96 ± 0.07 |
| 1000-LTTE | 73.38 ± 0.35 | 1.19 ± 0.14 | 4.13 ± 0.12 | 1.72 ± 0.12 | 4.56 ± 0.04 | 3.07 ± 0.14 | 12.10 ± 0.14 |
| Samples | Average size (nm) | Aspect ratio | |
|---|---|---|---|
| Length | Width | ||
| 100-LTTE | 36.1 ± 0.1 | 5.0 ± 0.8 | 0.19 ± 0.01 |
| 200-LTTE | 43.4 ± 0.4 | 16.9 ± 0.6 | 0.39 ± 0.02 |
| 500-LTTE | 46.4 ± 0.2 | 16.1 ± 2.3 | 0.36 ± 0.05 |
| 1000-LTTE | 47.6 ± 2.9 | 6.9 ± 0.7 | 0.15 ± 0.02 |
Table 4. Specific data of average size and aspect ratio of γ′′ phases in four 718Plus samples after LTTE heat treatments.
| Samples | Average size (nm) | Aspect ratio | |
|---|---|---|---|
| Length | Width | ||
| 100-LTTE | 36.1 ± 0.1 | 5.0 ± 0.8 | 0.19 ± 0.01 |
| 200-LTTE | 43.4 ± 0.4 | 16.9 ± 0.6 | 0.39 ± 0.02 |
| 500-LTTE | 46.4 ± 0.2 | 16.1 ± 2.3 | 0.36 ± 0.05 |
| 1000-LTTE | 47.6 ± 2.9 | 6.9 ± 0.7 | 0.15 ± 0.02 |
| Sample | 100-LTTE | 200-LTTE | 500-LTTE | 1000-LTTE |
|---|---|---|---|---|
| aγ (nm) | 0.2247 | 0.2247 | 0.2248 | 0.2249 |
| aγ' (nm) | 0.2248 | 0.2249 | 0.2251 | 0.2254 |
| δ (%) | 0.04 % | 0.1 % | 0.13 % | 0.22 % |
Table 5. Lattice parameters of the γ and γ′ and the γ/γ′ misfits of four 718Plus samples after LTTE heat treatments.
| Sample | 100-LTTE | 200-LTTE | 500-LTTE | 1000-LTTE |
|---|---|---|---|---|
| aγ (nm) | 0.2247 | 0.2247 | 0.2248 | 0.2249 |
| aγ' (nm) | 0.2248 | 0.2249 | 0.2251 | 0.2254 |
| δ (%) | 0.04 % | 0.1 % | 0.13 % | 0.22 % |
| Sample | 100-LTTE | 200-LTTE | 500-LTTE | 1000-LTTE |
|---|---|---|---|---|
| σTi diffusion (mJ/m2) | 2.0 | 0.98 | 0.68 | 1.74 |
| σAl diffusion (mJ/m2) | 3.64 | 3.87 | 5.15 | 2.61 |
Table 6. The interfacial energy between γ matrix and γ′ phase calculated using Ti diffusion (σTi diffusion) and Al diffusion (σAl diffusion).
| Sample | 100-LTTE | 200-LTTE | 500-LTTE | 1000-LTTE |
|---|---|---|---|---|
| σTi diffusion (mJ/m2) | 2.0 | 0.98 | 0.68 | 1.74 |
| σAl diffusion (mJ/m2) | 3.64 | 3.87 | 5.15 | 2.61 |
| Empty Cell | 100-LTTE | 200-LTTE | 500-LTTE | 1000-LTTE | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| γ' | γ | ki | γ' | γ | ki | γ' | γ | ki | γ' | γ | ki | |
| Ni | 69.76 | 53.43 | 1.31 | 71.87 | 53.02 | 1.36 | 70.51 | 53.03 | 1.33 | 72.39 | 53.61 | 1.35 |
| Cr | 2.62 | 18.86 | 0.14 | 1.44 | 18.90 | 0.08 | 2.17 | 18.92 | 0.11 | 1.16 | 18.46 | 0.06 |
| Co | 2.86 | 12.03 | 0.24 | 3.63 | 12.10 | 0.30 | 4.48 | 12.16 | 0.37 | 3.82 | 12.09 | 0.32 |
| Fe | 1.81 | 9.44 | 0.19 | 1.86 | 9.52 | 0.20 | 1.92 | 9.62 | 0.20 | 1.65 | 9.26 | 0.18 |
| Al | 9.61 | 1.79 | 5.37 | 11.26 | 1.96 | 5.74 | 10.81 | 1.76 | 6.14 | 9.67 | 1.97 | 4.91 |
| Ti | 4.35 | 0.61 | 7.13 | 3.17 | 0.69 | 4.59 | 2.74 | 0.71 | 3.86 | 3.85 | 0.75 | 5.13 |
| Nb | 8.99 | 3.12 | 2.88 | 6.75 | 2.39 | 2.82 | 7.33 | 2.38 | 3.08 | 7.42 | 2.57 | 2.89 |
Table 7. The chemical compositions (at.%) of γ′ phase and γ matrix and associated partition coefficient values of four 718Plus samples after LTTE heat treatments, as obtained from TEM-EDS.
| Empty Cell | 100-LTTE | 200-LTTE | 500-LTTE | 1000-LTTE | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| γ' | γ | ki | γ' | γ | ki | γ' | γ | ki | γ' | γ | ki | |
| Ni | 69.76 | 53.43 | 1.31 | 71.87 | 53.02 | 1.36 | 70.51 | 53.03 | 1.33 | 72.39 | 53.61 | 1.35 |
| Cr | 2.62 | 18.86 | 0.14 | 1.44 | 18.90 | 0.08 | 2.17 | 18.92 | 0.11 | 1.16 | 18.46 | 0.06 |
| Co | 2.86 | 12.03 | 0.24 | 3.63 | 12.10 | 0.30 | 4.48 | 12.16 | 0.37 | 3.82 | 12.09 | 0.32 |
| Fe | 1.81 | 9.44 | 0.19 | 1.86 | 9.52 | 0.20 | 1.92 | 9.62 | 0.20 | 1.65 | 9.26 | 0.18 |
| Al | 9.61 | 1.79 | 5.37 | 11.26 | 1.96 | 5.74 | 10.81 | 1.76 | 6.14 | 9.67 | 1.97 | 4.91 |
| Ti | 4.35 | 0.61 | 7.13 | 3.17 | 0.69 | 4.59 | 2.74 | 0.71 | 3.86 | 3.85 | 0.75 | 5.13 |
| Nb | 8.99 | 3.12 | 2.88 | 6.75 | 2.39 | 2.82 | 7.33 | 2.38 | 3.08 | 7.42 | 2.57 | 2.89 |
Fig. 10. (a) The histograms of partition coefficient (Ki) of the solute element (i) in four 705-LTTE samples, (b) the relations between [Ci(alloy)-Ci(γ)] and [Ci(γ′)-Ci(γ)] calculating the volume fraction of γ′ phase, (c) the comparison plot between the volume fractions of γ′ phase calculated from TEM-EDS analysis using the mass balance-based lever rule and statistically analyzed from SEM images.
Fig. 12. A qualitative model schematic illustration directly showing the evolution of γ′/γ′′ coprecipitates: (a) all evolution process during 705-LTTE heat treatment, (b) the evolution from γ′ to γ′′/γ′/γ′′ “sandwich coprecipitates, (c) the evolution from γ′′/γ′/γ′′ “sandwich” coprecipitates to γ′/γ′′ “partly compact” coprecipitates, (d) the evolution from γ′′/γ′/γ′′ “sandwich coprecipitates and γ′/γ′′ “partly compact” coprecipitates to γ′/γ′′ “all compact” coprecipitates.
| [1] |
G. Asala, A.K. Khan, J. Andersson, O.A. Ojo, Metall. Mater. Trans. A 48 (2017) 4211-4228.
DOI URL |
| [2] |
G. Asala, J. Andersson, O.A. Ojo, Int. J. Adv. Manuf. Technol. 87 (2016) 2721-2729.
DOI URL |
| [3] |
J. Li, Y.T. Wu, Y.C. Liu, C. Li, Z.Q. Ma, L.M. Yu, H.J. Li, C.X. Liu, Q.Y. Guo, Mater. Charact. 169 (2020) 110547.
DOI URL |
| [4] | P.R. Yang, C.X. Liu, Q.Y. Guo, Y.C. Liu, J. Mater. Sci. Technol. 21 (2021) 162-171. |
| [5] |
S. Meher, S. Nag, J. Tiley, A. Goel, R. Banerjee, Acta Mater 61 (2013) 4266-4276.
DOI URL |
| [6] |
R.P. Shi, D.P. McAllister, N. Zhou, A.J. Detor, R. DiDomizio, M.J. Mills, Y.Z. Wang, Acta Mater 164 (2019) 220-236.
DOI URL |
| [7] |
A.J. Detor, R. DiDomizio, R. Sharghi-Moshtaghin, N. Zhou, R.P. Shi, Y.Z. Wang, D.P. McAllister, M.J. Mills, Metall. Mater. Trans. A 49 (2018) 708-717.
DOI URL |
| [8] |
Y.N. Zhao, Q.Y. Guo, Z.Q. Ma, L.Q. Yu, Mater. Sci. Eng. A 791 (2020) 139735.
DOI URL |
| [9] |
F. Theska, K. Nomoto, F. Godor, B. Oberwinkler, A. Stanojevic, S.P. Ringer, S. Primig, Acta Mater 188 (2020) 492-503.
DOI URL |
| [10] |
F. Theska, A. Stanojevic, B. Oberwinkler, S. Primig, Mater. Sci. Eng. A 776 (2020) 138967.
DOI URL |
| [11] |
S.A. Mantri, S. Dasari, A. Sharma, T. Alam, M.V. Pantawane, M. Pole, S. Sharma, N.B. Dahotre, R. Banerjee, S. Banerjee, Acta Mater 210 (2021) 116844.
DOI URL |
| [12] |
Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, Y. Zhang, Int. J. Miner. Metall. Mater. 27 (2020) 1123-1131.
DOI URL |
| [13] |
G. Asala, J. Andersson, O.A. Ojo, Corros. Sci. 158 (2019) 108086.
DOI URL |
| [14] |
F. Theska, A. Stanojevic, B. Oberwinkler, S.P. Ringer, S. Primig, Acta Mater 156 (2018) 116-124.
DOI URL |
| [15] |
P. Pandey, S. Kashyap, D. Palanisamy, A. Sharma, K. Chattopadhyay, Acta Mater 177 (2019) 82-95.
DOI URL |
| [16] |
P. Pandey, A.K. Sawant, B. Nithin, Z. Peng, S.K. Makineni, B. Gault, K. Chattopad- hyay, Acta Mater 168 (2019) 37-51.
DOI |
| [17] |
S. Mukhopadhyay, P. Pandey, B. Nithin, K. Biswas, S.K. Makineni, K. Chattopad- hyay, Acta Mater 208 (2021) 116736.
DOI URL |
| [18] |
H.J. Zhang, C. Li, Y.C. Liu, Q.Y. Guo, H.J. Li, Mater. Sci. Eng. A 677 (2016) 515-521.
DOI URL |
| [19] |
P. Zhang, Y. Yuan, L. Zhong, Y.F. Gu, J.B. Yan, J.T. Lu, Z. Yang, Materialia 16 (2021) 101061.
DOI URL |
| [20] |
L. Luo, Y. Ma, S.S. Li, Y.L. Pei, L. Qin, S.K. Gong, Intermetallics 99 (2018) 18-26.
DOI URL |
| [21] |
Q.Z. Gao, Y.J. Jiang, Z.Y. Liu, H.L. Zhang, C.C. Jiang, X. Zhang, H.J. Li, Mater. Sci. Eng. A 779 (2020) 139139.
DOI URL |
| [22] |
L. Tang, J.J. Liang, C.Y. Cui, J.G. Li, Y.Z. Zhou, X.F. Sun, Y.T. Ding, Mater. Sci. Eng. A 786 (2020) 139438.
DOI URL |
| [23] |
X. He, C. Liu, Y.K. Yang, J. Ding, X.G. Chen, X.C. Xia, Y. Tang, Y.C. Liu, J. Alloy. Compd. 872 (2021) 159674.
DOI URL |
| [24] |
Y.T. Wu, C. Li, X.C. Xia, H.Y. Liang, Q.Q. Qi, Y.C. Liu, J. Mater. Sci. Technol. 67 (2021) 95-104.
DOI URL |
| [25] |
X.L. Zhuang, S. Antonov, L.F. Li, Q. Feng, Scr. Mater. 202 (2021) 114004.
DOI URL |
| [26] |
S. Meher, M.C. Carroll, T.M. Pollock, L.J. Carroll, Mater. Des. 140 (2018) 249-256.
DOI URL |
| [27] |
J.C. Zhang, T.W. Huang, F. Lu, K.L. Cao, D. Wang, J. Zhang, J. Zhang, H.J. Su, L. Liu, Scr. Mater. 204 (2021) 114131.
DOI URL |
| [28] |
T.J. Zhou, H.S. Ding, X.P. Ma, W. Feng, H.B. Zhao, Y. Meng, H.X. Zhang, Y.M. Lv, Mater. Sci. Eng. A 725 (2018) 299-308.
DOI URL |
| [29] |
C. Ai, X.B. Zhao, J. Zhou, H. Zhang, L. Liu, Y.L. Pei, S.S. Li, S.K. Gong, J. Alloy. Compd. 632 (2015) 558-562.
DOI URL |
| [30] |
M.Q. Ou, Y.C. Ma, H.L. Ge, B. Chen, S.J. Zheng, K. Liu, Mater. Sci. Eng. A 736 (2018) 76-86.
DOI URL |
| [31] |
H. Jiang, C. Liu, J.X. Dong, M.C. Zhang, J. Alloy. Compd. 821 (2020) 153217.
DOI URL |
| [32] |
D.J. Sauza, D.C. Dunand, R.D. Noebe, D.N. Seidman, Acta Mater 164 (2019) 654-662.
DOI URL |
| [33] |
E.A. Lass, D.J. Sauza, D.C. Dunand, D.N. Seidman, Acta Mater 147 (2018) 284-295.
DOI URL |
| [34] |
N. Baler, P. Pandey, D. Palanisamy, S.K. Makineni, G. Phanikumar, K. Chattopad- hyay, Materialia 10 (2020) 100632.
DOI URL |
| [35] |
P. Pandey, A. Raj, N. Baler, K. Chattopadhyay, Materialia 16 (2021) 101072.
DOI URL |
| [36] |
F.L.R. Tirado, S. Taylor, D.C. Dunand, Acta Mater 172 (2019) 44-54.
DOI URL |
| [37] |
Y.C. Chen, C.P. Wang, J.J. Ruan, T. Omori, R. Kainuma, K. Ishida, X.J. Liu, Acta Mater 170 (2019) 62-74.
DOI URL |
| [38] |
Y. Guan, Y.C. Liu, Z.Q. Ma, H.J. Li, H.Y. Yu, J. Alloy. Compd. 842 (2020) 155891.
DOI URL |
| [39] |
J.C. Zhang, T.W. Huang, F. Lu, K.L. Cao, D. Wang, J. Zhang, J. Zhang, H.J. Su, L. Liu, J. Alloy. Compd. 876 (2021) 160114.
DOI URL |
| [40] |
X.G. You, Y. Tan, H.Y. Cui, H.X. Zhang, X.P. Zhuang, L.H. Zhao, S.Q. Niu, Y. Li, P.T. Li, Mater. Charac. 173 (2021) 110925.
DOI URL |
| [41] |
R.V. Patil, G.B. Kale, J. Nucl. Mater. 230 (1996) 57-60.
DOI URL |
| [42] |
M. Rafiei, H. Mirzadeh, M. Malekan, M.J. Sohrabi, J. Alloy. Compd. 793 (2019) 277-282.
DOI URL |
| [1] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
