J. Mater. Sci. Technol. ›› 2022, Vol. 112: 96-113.DOI: 10.1016/j.jmst.2021.09.049
• Research Article • Previous Articles Next Articles
Yunfa Guoa, Yan Jin Leea, Yu Zhanga, Anastassia Sorkina, Sergei Manzhosb,*(), Hao Wanga,*(
)
Received:
2021-07-13
Revised:
2021-08-25
Accepted:
2021-09-23
Published:
2021-12-12
Online:
2021-12-12
Contact:
Sergei Manzhos,Hao Wang
About author:
mpewhao@nus.edu.sg (H. Wang).Yunfa Guo, Yan Jin Lee, Yu Zhang, Anastassia Sorkin, Sergei Manzhos, Hao Wang. Effect of a weak magnetic field on ductile-brittle transition in micro-cutting of single-crystal calcium fluoride[J]. J. Mater. Sci. Technol., 2022, 112: 96-113.
Fig. 1. (a) Reverse electron transfer from F- to Ca2+; (b) Spin conversion of radical pairs under the magnetic excitation; (c) Detached dislocations from stoppers in a magnetic field.
Fig. 3. (a) Calculated M values versus six activated slip systems and their averages value along $\left[ 11\bar{2} \right]$ cutting direction at varying magnetic field directions; (b) Average values of M for all four cutting directions with respect to different magnetic field directions.
Crystal structure | Lattice constant | Density | Melting point | Hardness | Young's modulus |
---|---|---|---|---|---|
Cubic | a = 5.4626 Å | 3.18 g/cm3 | 1360 °C | 158.3 Knoop | 75.8 GPa |
Table 1. Material properties of CaF2.
Crystal structure | Lattice constant | Density | Melting point | Hardness | Young's modulus |
---|---|---|---|---|---|
Cubic | a = 5.4626 Å | 3.18 g/cm3 | 1360 °C | 158.3 Knoop | 75.8 GPa |
Fig. 4. (a) Experimental setup of micro-indentation tests under a weak magnetic field. (b) Magnetic field-assisted micro plunge-cutting setup on an ultra-precision machining centre. (c) Schematic of micro plunge-cutting tests. (d) Varying magnetic field direction during micro plunge-cutting tests. (NMF: no magnetic field; MF: magnetic field).
Parameters | Values | |
---|---|---|
Workpiece | Material | CaF2 single crystal |
Dimension | 10 mm × 10 mm × 5 mm | |
Crystal plane | (111) | |
Edge orientations | <110>/<211> | |
Micro-indentation tests | Load | 0.25 N, 0.5 N |
Loading rate | 0.5 mm/s | |
Dwell time | 15 s | |
Magnetic field source | Permanent magnets | |
Magnetic field intensity | 20 mT | |
Micro-plunge-cutting tests | Tool material | Single-crystal diamond (SCD) |
Rake angle | -10° | |
Nose radius | 1.6 mm | |
Cutting speed υc | 20 mm/min | |
Undeformed chip thickness dc | 0-2 μm | |
Cutting length Lc | 3 mm | |
Cutting directions | | |
Magnetic field source | Electromagnet | |
Magnetic field intensity | 20 mT | |
Magnetic field directions | 0°, 30°, 60°, 90° relative to each cutting direction |
Table 2. Experimental parameters used in micro-indentation and micro plunge-cutting tests.
Parameters | Values | |
---|---|---|
Workpiece | Material | CaF2 single crystal |
Dimension | 10 mm × 10 mm × 5 mm | |
Crystal plane | (111) | |
Edge orientations | <110>/<211> | |
Micro-indentation tests | Load | 0.25 N, 0.5 N |
Loading rate | 0.5 mm/s | |
Dwell time | 15 s | |
Magnetic field source | Permanent magnets | |
Magnetic field intensity | 20 mT | |
Micro-plunge-cutting tests | Tool material | Single-crystal diamond (SCD) |
Rake angle | -10° | |
Nose radius | 1.6 mm | |
Cutting speed υc | 20 mm/min | |
Undeformed chip thickness dc | 0-2 μm | |
Cutting length Lc | 3 mm | |
Cutting directions | | |
Magnetic field source | Electromagnet | |
Magnetic field intensity | 20 mT | |
Magnetic field directions | 0°, 30°, 60°, 90° relative to each cutting direction |
Fig. 10. Dislocation slip traces induced by the micro-indentation with a load of 0.5 N in the (a) absence and (b) presence of the magnetic field. Schematic of dislocation source, dislocation loops, surface slip traces during indentation: (c) front view; (d) top view.
Fig. 12. Plunge-cutting depth-distance curves of micro-grooves along $\left[ 11\bar{2} \right]$ cutting direction with varying magnetic field directions. (DBT: ductile–brittle transition).
Fig. 16. (a) Relative change in critical undeformed chip thickness; (b) Relative change in cutting force at ductile–brittle transition; (c) Value of M at 5° lattice rotation angle; (d) Value of M at 10° lattice rotation angle with different cutting directions under varying magnetic field directions. (${{d}_{\text{c}}}$: undeformed chip thickness).
Fig. 18. Machined subsurface of CaF2 single crystal along $\left[ 11\bar{2} \right]$ cutting direction without magnetic field: (a) cross-sectional transmission electron microscopy TEM (XTEM) overview of subsurface damage; (b), (c), (d) high-resolution TEM (HRTEM) images and the corresponding selected area electron diffraction (SAED) patterns of Regions 1, 2, 3 in (a).
Fig. 19. Machined subsurface of CaF2 single crystal along $\left[ 11\bar{2} \right]$ cutting direction with a magnetic field (0°): (a) cross-sectional transmission electron microscopy TEM (XTEM) overview of subsurface damage; (b), (c), (d) high-resolution TEM (HRTEM) images and the corresponding selected area electron diffraction (SAED) patterns of Regions 1, 2, 3 in (a).
Fig. 20. Machined subsurface of CaF2 single crystal along $\left[ 11\bar{2} \right]$ cutting direction with a magnetic field (90°): (a) cross-sectional transmission electron microscopy TEM (XTEM) overview of subsurface damage; (b), (c), (d) high-resolution TEM (HRTEM) images and the corresponding selected area electron diffraction (SAED) patterns of Regions 1, 2, 3 in (a).
[1] |
M. El Mansori, A. Mkaddem, Surf. Coatings Technol. 202 (2007) 1118-1122.
DOI URL |
[2] |
A. Mkaddem, M. El Mansori, Mater. Manuf. Process. 27 (2012) 1073-1077.
DOI URL |
[3] | A. Dehghani, S.K. Amnieh, A.F. Tehrani, A. Mohammadi, Wear 384-385 (2017) 1-7. |
[4] |
M.I. Molotskii, Mater. Sci. Eng. A 287 (2000) 248-258.
DOI URL |
[5] |
V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, E.A. Petrzhik, Crystallogr. Reports 48 (2003) 768-795.
DOI URL |
[6] |
M.I. Kaganov, Y.V. Khokhlovkin, V.D. Natsik, Sov. Phys. - Uspekhi 16 (1974) 878-891.
DOI URL |
[7] | V.I. Alshits, E.V. Darinskaya, T.M. Perecalina, A.A. Urusovskaya, Sov. Phys. Solid State 29 (1987) 65. |
[8] |
A.A. Urusovskaya, V.I. Alshits, A.E. Smirnov, N.N. Bekkauer, Crystallogr. Reports 48 (2003) 796-812.
DOI URL |
[9] |
Y.I. Golovin, Phys. Solid State 46 (2004) 789-824.
DOI URL |
[10] | K. Liu, H. Wang, X. Zhang, in: Ductile Mode Cut. Brittle Mater, Springer Singa-pore, Singapore, 2020, pp. 179-210. |
[11] |
J. Yan, J. Tamaki, K. Syoji, T. Kuriyagawa, Int. J. Adv. Manuf. Technol. 24 (2004) 640-646.
DOI URL |
[12] | Y.J. Lee, A. Chaudhari, J. Zhang, H. Wang, Thermally Assisted Microcutting of Calcium Fluoride Single Crystals, Springer, Singapore, 2019. |
[13] |
J. Zhang, J. Zhang, C. Liu, X. Chen, J. Xiao, J. Xu, Precis. Eng. 66 (2020) 306-314.
DOI URL |
[14] |
Y.J. Lee, J.Y. Chong, A. Chaudhari, H. Wang, Int. J. Precis. Eng. Manuf. - Green Technol. 7 (2020) 1019-1029.
DOI URL |
[15] |
J. Cheng, Y.D. Gong, Int. J. Mach. Tools Manuf. 77 (2014) 1-15.
DOI URL |
[16] |
J. Cheng, J. Wu, Y.D. Gong, X.L. Wen, Q. Wen, Int. J. Mach. Tools Manuf. 112 (2017) 7-20.
DOI URL |
[17] |
N.E. Smirnov, Moscow Univ. Phys. Bull. 74 (2019) 453-458.
DOI URL |
[18] | Y.I. Golovin, Kristallografiya 49 (2004) 747-755. |
[19] | R.M. Wood, Phys. Bull. 37 (1986) 503-503. |
[20] |
A.L. Buchachenko, J. Exp. Theor. Phys. 102 (2006) 795-798.
DOI URL |
[21] |
V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, R.K. Kotowski, E.A. Petrzhik, P. Tronczyk, Uspekhi Fiz, Nauk 187 (2017) 327-341.
DOI URL |
[22] | K.-.D. Li, H.Y. Xiao, L.M. Wang, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266 (2008) 2698-2701. |
[23] |
A.M. Burow, M. Sierka. J. Döbler, J. Sauer, J. Chem. Phys. 130 (2009) 174710.
DOI URL |
[24] |
M. El Mansori, B.E. Klamecki, J. Manuf. Sci. Eng. Trans. ASME 128 (2006) 136-145.
DOI URL |
[25] |
K. Durst, B. Backes, O. Franke M. Göken, Acta Mater 54 (2006) 2547-2555.
DOI URL |
[26] |
K.B. Broberg, Int. J. Fract. 4 (1968) 11-19.
DOI URL |
[27] |
M. Tiegel, R. Hosseinabadi, S. Kuhn, A. Herrmann, C. Rüssel, Ceram. Int. 41 (2015) 7267-7275.
DOI URL |
[28] | C.A. Brookes, J.B.O. Neill, B.A.W. Redfern, Proc. R. Soc. London. A. Math. Phys. Sci. 322 (1971) 73-88. |
[29] | E. Schmid, W. Boas, Plasticity of Crystals: With Special Reference to Metals, English, Chapman & Hall, 1968. |
[30] |
Y. Mizumoto, Y. Kakinuma, Precis. Eng. 53 (2018) 9-16.
DOI URL |
[31] | L. Chen, L. Hu, C. Xiao, Y. Qi, B. Yu, L. Qian, Wear 376-377 (2017) 409-416. |
[32] | V.I. Alshits, E.V. Darinskaya, O.L. Kazakova, E.Y. Mikhina, E.A. Petrzhik, J. Alloys Compd. 211-212 (1994) 548-553. |
[33] |
J.D. Gale, A. Achuthan, J. Mater. Sci. 49 (2014) 5066-5075.
DOI URL |
[34] |
M. Mata, O. Casals, J. Alcalá, Int. J. Solids Struct. 43 (2006) 5994-6013.
DOI URL |
[35] |
K.L. Johnson, J. Mech. Phys. Solids 18 (1970) 115-126.
DOI URL |
[36] |
J.T. Busby, M.C. Hash, G.S. Was, J. Nucl. Mater. 336 (2005) 267-278.
DOI URL |
[37] |
W. Zielinski, H. Huang, W.W. Gerberich, J. Mater. Res. 8 (1993) 1300-1310.
DOI URL |
[38] |
S. Harvey, H. Huang, S. Venkataraman, W.W. Gerberich, J. Mater. Res. 8 (1993) 1291-1299.
DOI URL |
[39] |
Y. Mizumoto, H. Amano, H. Kangawa, K. Harano, H. Sumiya, Y. Kakinuma, Precis. Eng. 52 (2018) 73-83.
DOI URL |
[40] |
H. Wang, O. Riemer, K. Rickens, E. Brinksmeier, Scr. Mater. 114 (2016) 21-26.
DOI URL |
[41] |
Y. Zhang, Y. Gao, L. Nicola, J. Mech. Phys. Solids 68 (2014) 267-279.
DOI URL |
[1] | J. Duy, M. Strangwood, C.L. Davis. Effect of TiN Particles and Grain Size on the Charpy Impact Transition Temperature in Steels [J]. J. Mater. Sci. Technol., 2012, 28(10): 878-888. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||