J. Mater. Sci. Technol. ›› 2022, Vol. 112: 24-35.DOI: 10.1016/j.jmst.2021.09.033
• Research Article • Previous Articles Next Articles
Qiang Liua(), Jiangfeng Songa,*(
), Yuanding Huangb(
), Bin Jianga(
), Biquan Xiaoa(
), Fusheng Pana(
)
Received:
2021-07-18
Revised:
2021-09-15
Accepted:
2021-09-15
Published:
2021-11-27
Online:
2021-11-27
Contact:
Qiang Liu,Jiangfeng Song,Yuanding Huang,Bin Jiang,Biquan Xiao,Fusheng Pan
About author:
fspan@cqu.edu.cn (F. Pan).Qiang Liu, Jiangfeng Song, Yuanding Huang, Bin Jiang, Biquan Xiao, Fusheng Pan. Comparison of edge cracking and tensile cracking in in-situ deformation at 150 °C of Mg-2Zn-1.5Mn alloy sheet[J]. J. Mater. Sci. Technol., 2022, 112: 24-35.
Fig 1. Microstructure of as-extruded ZM21 magnesium alloy (a) optical microstructure, (b) grain size distribution in (a), (c) local IPF map in ED-ND section (d) (0001) pole figure.
Fig 2. (a) Schematic location of the tensile samples in extruded sheet, (b) dimensions of the in-situ tensile specimens (unit: mm), (c) stress-displacement curve of the specimen.
Fig 3. Macro-morphology of the edge cracks of ZM21 alloy sheets after rolled with different pass reductions (a) 30%, (b) 45%, (c, e) 60%, and the cracks only on the RD-ND plane are shown by red arrows in (e), (d, f) 75% and the cracks only on RD-ND plane are shown by red arrows in (f).
Fig 4. Surface appearance on ND-RD section of the rolled specimens with reductions of (a) 30% and the surface groove is illustrated by the arrow, (b) 45% and the minor crack is presented by the arrow, (c) 60%, (d) 75%.
Fig 5. Microstructures of RD-ND sections for ZM21 alloy sheets after rolled with different reductions of (a) 30%, (b) 45%, (c) 60%, (d) 75%; (e), (f), (g), and (h) are corresponding grain diameter distribution, respectively.
Fig 6. Micro edge cracks in the ND-RD plane at a single pass reduction of 60% (a), (d) Inverse pole figure (IPF) map; (b), (e) corresponding recrystallization map in (a), (d), respectively; (c), (f) corresponding Kernel average misorientation (KAM) map in (a), (d), respectively.
Fig 7. Macro SEM morphological evolution of the ZM21 alloy during the in-situ tensile experiments at 150 °C (a) 0.37 mm, (b) 0.46 mm, (c) 0.56 mm, (d) 0.75 mm and some visible micro-holes are presented by arrows, (e) 0.79 mm, (f) final fracture. The tensile loading direction is horizontal.
Fig 8. SEM images of ZM21 alloy tensile deformed at 150 °C with different displacements, (a) 0.37 mm, (b) 0.46 mm, (c) 0.56 mm and some micro-cracks are shown in the white arrows, (d) 0.75 mm, (e) 0.79 mm; and the large grains are marked with red arrows in (d) and (e); (f) the magnified view of the marked region in (e); and the twins are marked with green arrows.
Fig 9. In-situ scanning images at various displacements (a) 0.37 mm, (b) 0.46 mm, (c) 0.56 mm, (d) 0.75 mm; and cracks are also marked with red arrows in (c), (d); and (e), (f), (g), and (h) are their corresponding inverse pole figures (IPF) map, respectively.
Fig 10. Recrystallization maps at various displacement levels (a) 0.37 mm, (b) 0.46 mm, (c) 0.56 mm and (d) 0.75 mm; (e), (f), (g) and (h) are their corresponding Kernel average misorientation maps, and high stress concentration areas are labeled by dotted ellipses in (g); (i), (j), (k) and (l) are their corresponding distribution of KAM value.
Fig 11. In-situ SEM images and inverse pole figures (IPF) of ZM21 in-situ tensile sample at 150 °C with different displacements, (a) 0.37 mm, (b) 0.46 mm, (c) 0.56 mm, (d) 0.75 mm, and the crack area is marked with the dotted ellipse; (e), (f), (g) and (h) are their corresponding inverse pole figure (IPF) maps.
Fig 12. In-situ SEM maps of the local magnified area around cracks in Fig. 11 at various displacement levels (a) 0.37 mm, (b) 0.46 mm, (c) 0.56 mm and the obvious slip trace is marked by the yellow arrow, the grain distortion and surface buckling are marked with white arrows; (d) 0.75 mm, a twin in G13 and some cracks are labeled, as shown in yellow arrows; (e), (f), (g) and (h) are their corresponding IPF maps and pole figures; (i), (j), (k) and (l) are their corresponding recrystallization maps; (m), (n), (o) and (p) are their corresponding Kernel average misorientation (KAM) maps.
Fig 13. Schematic diagram of the stress state for the sheet during deformation, (a) the rolling and the stress state at the center and edge of the sheet during the rolling (b) the stress state of in-situ tensile test.
Fig 14. (a) Local IPF maps at the displacement of 0.37 mm, (b) twins situation in (a), and (c) the Schmid factor for basal slip in the selected area, (d) grain orientation around the cracks.
Cracks | Grains around the cracks | SF/Basal | ∆SF |
---|---|---|---|
Crack1 G1/G3 | G1 | 0.18 | G1-G3, 0.09 |
G2 | 0.14 | G2-G3, 0.05 | |
G3 | 0.09 | G1-G2, 0.04 | |
Crack2 G5/G6 | G5 | 0.44 | G5-G6, 0.34 |
G6 | 0.10 | G5-G6, 0.34 | |
Crack3 G7/G9 G8/G9 | G7 | 0.29 | G8-G9, 0.22 |
G8 | 0.33 | G7-G9, 0.18 | |
G9 | 0.11 | G7-G8, 0.04 | |
Crack4 G11/G21 G11/G12 | G11 | 0.38 | G11-G21, 0.31 |
G12 | 0.31 | G12-G21, 0.24 | |
G21 | 0.07 | G11-G12, 0.07 | |
Crack5 G11/G13 | G11 | 0.38 | G11-G13, 0.26 |
G13 | 0.12 | G11-G24, 0.13 | |
G24 | 0.25 | G13-G24, 0.13 | |
Crack6 G11/G14 | G11 | 0.38 | G11-G14, 0.31 |
G13 | 0.12 | G11-G13, 0.26 | |
G14 | 0.07 | G13-G14, 0.05 | |
Crack7 G14/G15 | G14 | 0.07 | G14-G15, 0.22 |
G15 | 0.29 | G14-G16, 0.21 | |
G16 | 0.28 | G15-G16, 0.01 |
Table 1. Grains around the cracks and their corresponding Schmid factors for basal slip
Cracks | Grains around the cracks | SF/Basal | ∆SF |
---|---|---|---|
Crack1 G1/G3 | G1 | 0.18 | G1-G3, 0.09 |
G2 | 0.14 | G2-G3, 0.05 | |
G3 | 0.09 | G1-G2, 0.04 | |
Crack2 G5/G6 | G5 | 0.44 | G5-G6, 0.34 |
G6 | 0.10 | G5-G6, 0.34 | |
Crack3 G7/G9 G8/G9 | G7 | 0.29 | G8-G9, 0.22 |
G8 | 0.33 | G7-G9, 0.18 | |
G9 | 0.11 | G7-G8, 0.04 | |
Crack4 G11/G21 G11/G12 | G11 | 0.38 | G11-G21, 0.31 |
G12 | 0.31 | G12-G21, 0.24 | |
G21 | 0.07 | G11-G12, 0.07 | |
Crack5 G11/G13 | G11 | 0.38 | G11-G13, 0.26 |
G13 | 0.12 | G11-G24, 0.13 | |
G24 | 0.25 | G13-G24, 0.13 | |
Crack6 G11/G14 | G11 | 0.38 | G11-G14, 0.31 |
G13 | 0.12 | G11-G13, 0.26 | |
G14 | 0.07 | G13-G14, 0.05 | |
Crack7 G14/G15 | G14 | 0.07 | G14-G15, 0.22 |
G15 | 0.29 | G14-G16, 0.21 | |
G16 | 0.28 | G15-G16, 0.01 |
Fig 15. Partial grains at the displacement of 0.37 mm (a) IPF map, and (b) the Schmid factor for basal slip, (c) grains orientation around the triple junction of grain boundaries with the dotted line in (b).
[1] |
M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, JOM 60 (2008) 57-62.
DOI URL |
[2] |
B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37-45.
DOI URL |
[3] |
J. Song, J. She, D. Chen, F. Pan, J. Magnes. Alloys 8 (2020) 1-41.
DOI URL |
[4] |
G. Wu, C. Wang, M. Sun, W. Ding, J. Magnes. Alloys 9 (2021) 1-20.
DOI URL |
[5] |
N. Li, Y. Zheng, J. Mater. Sci. Technol. 29 (2013) 489-502.
DOI URL |
[6] |
Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloys. 9 (2021) 705-747.
DOI URL |
[7] |
S.C. Sutton, A .A. Luo, J. Magnes. Alloys 8 (2020) 111-126.
DOI URL |
[8] |
B. Zhu, X. Liu, C. Xie, J. Su, P. Guo, C. Tang, W. Liu, J. Mater. Sci. Technol. 50 (2020) 59-65.
DOI URL |
[9] |
S.F. Golovashchenko, Int. J. Mech. Sci. 48 (2006) 1384-1400.
DOI URL |
[10] |
Q.W. Dai, D.F. Zhang, L. Fang, X.X. Xu, X. Chen, Mater. Sci. Technol. 28 (2012) 415-419.
DOI URL |
[11] |
M. Pekguleryuz, M. Celikin, M. Hoseini, A. Becerra, L. Mackenzie, J. Alloys Compd. 510 (2012) 15-25.
DOI URL |
[12] |
Y. Huang, B. Xiao, J. Song, H. Zhao, Q. Liu, B. Jiang, F. Pan, J. Mater. Res. Technol. 9 (2020) 1988-1997.
DOI URL |
[13] |
X. Rao, Y. Wu, X. Pei, Y. Jing, L. Luo, Y. Liu, J. Lu, Mater. Sci. Eng. A 754 (2019) 112-120.
DOI URL |
[14] |
L.J. Chen, Q.L. Jing, H. Li, Appl. Mech. Mater. 723 (2015) 914-918.
DOI URL |
[15] |
Y. Ding, Q. Le, Z. Zhang, L. Bao, J. Cao, J. Cui, J. Mater. Process. Technol. 213 (2013) 2101-2108.
DOI URL |
[16] |
C. Zhi, L. Ma, Q. Huang, Z. Huang, J. Lin, J. Mater. Process. Technol. 255 (2018) 333-339.
DOI URL |
[17] | S. Manabe, H. Utsunomiya, T. Sakai, R. Matsumoto, Adv. Mater. Res. 922 (2014) 469-474. |
[18] |
Z. Huang, Q. Huang, J. Wei, L. Ma, D. Wu, D. He, J. Mater, Process. Technol. 246 (2017) 85-92.
DOI URL |
[19] | Q. Liu, J. Song, F. Pan, J. She, S. Zhang, P. Peng, Met. 8 (2018) 860. |
[20] |
F. Pan, B. Zeng, B. Jiang, M. Zhang, H. Dong, J. Alloys Compd. 693 (2017) 414-420.
DOI URL |
[21] |
B. Xiao, J. Song, A. Tang, B. Jiang, W. Sun, Q. Liu, H. Zhao, F. Pan, J. Mater, Process. Technol. 280 (2020) 116611.
DOI URL |
[22] | B. Xiao, J. Song, H. Zhao, A. Tang, Q. Liu, B. Jiang, S. Dou, F. Pan, Acta Metall. Sin. (Engl. Lett.) 34 (2021) 227-238. |
[23] | H.L. Yu, X.H. Liu, G.D. Wang, J. Iron Steel Res. Int. 15 (2008) 19-26. |
[24] |
J. Tateno, T. Samukawa, Y. Sodani, ISIJ Int. 56 (2016) 1219-1225.
DOI URL |
[25] |
H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin, W.J. Ding, Int. J. Plast. 84 (2016) 255-276.
DOI URL |
[26] |
B. Xi, G. Fang, S. Xu, Mater. Sci. Eng. A 749 (2019) 148-157.
DOI URL |
[27] |
J. Lu, L. Chang, J. Wang, L. Sang, S. Wu, Y. Zhang, Mater. Sci. Eng. A 712 (2018) 199-205.
DOI URL |
[28] | H.B. Xie, D. Wei, K. Tieu, AIP Conf. Proc 1252 (2010) 1320-1325. |
[29] |
H. Wang, C.J. Boehlert, Q. Wang, D. Yin, W. Ding, Metall. Mater. Trans. A 47 (2016) 2421-2443.
DOI URL |
[30] |
M. Zhang, J. Wang, Y. Zhu, L. Zhang, P. Jin, Mater. Sci. Eng. A 775 (2020) 138978.
DOI URL |
[31] |
N.S. Prasad, N. Naveen Kumar, R. Narasimhan, S. Suwas, Acta Mater 94 (2015) 281-293.
DOI URL |
[32] |
Q. Zhao, F. Yang, R. Torrens, L. Bolzoni, Mater. Sci. Eng. A 750 (2019) 45-59.
DOI URL |
[33] |
D. Ando, Y. Sutou, J. Koike, Mater. Sci. Eng. A 666 (2016) 94-99.
DOI URL |
[34] |
J. Zhao, M. Huo, X. Ma, F. Jia, Z. Jiang, Mater. Sci. Eng. A 747 (2019) 53-62.
DOI URL |
[35] |
B.N.L. McBride, K.D. Clarke, A.J. Clarke, J. Manuf. Processes 55 (2020) 236-239.
DOI URL |
[36] | M.G. Cockcroft, D.J. Latham, J. Inst. Met. 96 (1968) 33-39. |
[37] |
Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater 47 (1999) 579-583.
DOI URL |
[38] |
Y.W. Li, H.T. Liu, Z.J. Wang, X.M. Zhang, G.D. Wang, Mater. Sci. Eng. A 731 (2018) 377-384.
DOI URL |
[39] |
S.H. Lee, K.H. Lee, S.B. Lee, B.M. Kim, Int. J. Precis. Eng. Manuf. 14 (2013) 2109-2118.
DOI URL |
[40] | O.M. Ikumapayi, E.T. Akinlabi, P. Onu, O.P. Abolusoro, Mater, Today: Proc 26 (2020) 1644-1649. |
[41] |
M.M. Al-Mousawi, A.M. Daragheh, S.K. Ghosh, D.K. Harrison, J. Mater. Process. Technol. 32 (1992) 461-470.
DOI URL |
[42] |
K. Alkan, O.B. Aytuna, B. Güler, M. Efe, J. Magnes. Alloys 8 (2020) 472-479.
DOI URL |
[43] |
H. Xie, Z. Jiang, W.Y.D. Yuen, Metall. Mater. Trans. B 42 (2011) 1244-1252.
DOI URL |
[44] |
H.L. Kim, J.H. Lee, C.S. Lee, W. Bang, S.H. Ahn, Y.W. Chang, Mater. Sci. Eng. A 558 (2012) 431-438.
DOI URL |
[45] |
S. Jiang, Y. Jia, X. Wang, J. Magnes. Alloys 8 (2020) 1186-1197.
DOI URL |
[46] |
X. Liu, B.W. Zhu, C. Xie, J. Zhang, C.P. Tang, Y.Q. Chen, Mater. Sci. Eng. A 733 (2018) 98-107.
DOI URL |
[47] |
A. Malik, Y. Wang, C. Huanwu, F. Nazeer, B. Ahmed, M.A. Khan, W. Mingjun, Mater. Sci. Eng. A 771 (2020) 138649.
DOI URL |
[48] |
F. Guo, D. Zhang, X. Yang, L. Jiang, S. Chai, F. Pan, Mater. Sci. Eng. A 607 (2014) 383-389.
DOI URL |
[49] |
J. Su, M. Sanjari, A.S.H. Kabir, I.H. Jung, J.J. Jonas, S. Yue, H. Utsunomiya, Mater. Sci. Eng. A 636 (2015) 582-592.
DOI URL |
[50] | X. Deng, L. Zhang, Y. He, J.B. Pei, Y. Lu, J. Plast. Eng. 14 (2007) 24-29. |
[51] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[52] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[53] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
[1] | Cong Wu, Qinyang Zhao, Shixing Huang, Yongqing Zhao, Lei Lei, Junqiang Ren, Qiaoyan Sun, Lian Zhou. Deformation mechanisms in a β-quenched Ti-5321 alloy: In-situ investigation related to slip activity, orientation evolution and stress induced martensite [J]. J. Mater. Sci. Technol., 2022, 112(0): 36-48. |
[2] | Biwu Zhu, Xiao Liu, Chao Xie, Jing Su, Pengcheng Guo, Changping Tang, Wenhui Liu. Unveiling the underlying mechanism of forming edge cracks upon high strain-rate rolling of magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 50(0): 59-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||