J. Mater. Sci. Technol. ›› 2022, Vol. 101: 128-145.DOI: 10.1016/j.jmst.2021.06.014
• Research Article • Previous Articles Next Articles
Xiaohong Jia,c,d,e, Wei Wangb,c,*(
), Xia Zhaoa,c,d,*(
), Lifei Wanga,c,d, Fubin Maa,c,d, Yanli Wange, DuanJi zhoua,c,d, Baorong Houa,c,d,e,*(
)
Received:2021-04-14
Revised:2021-05-26
Accepted:2021-06-06
Published:2022-02-28
Online:2021-08-05
Contact:
Wei Wang,Xia Zhao,Baorong Hou
About author:brhou@qdio.ac.cn (B. Hou).Xiaohong Ji, Wei Wang, Xia Zhao, Lifei Wang, Fubin Ma, Yanli Wang, DuanJi zhou, Baorong Hou. Poly(dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers[J]. J. Mater. Sci. Technol., 2022, 101: 128-145.
Fig. 2. Schematic of process used for preparing self-healing coatings: (a) synthesis of CA@(OA+AVR) core-shell electrospun fibers, (b) preparation of hydrophobic solution, (c) preparation of hydrophobic fiber materials, and (d) applying the fiber composite coating on the surface of Q235 steel.
Fig. 3. (a) SEM image, (b) the diameter distribution, (c) SEM image of the poor-synthesized electrospun fibers, (d) TEM image, and (e, f) confocal fluorescence microscopy images of the well-synthesized electrospun fibers.
Fig. 7. Load-extension curves derived from tensile tests based on the adhesion of the samples to tin foil paper: (a) fibers (b) PDMS coating, and (c) Fibers-PDMS coating.
| sample | Load (N) | Extension (mm) | Tensile strength (MPa) | Elongation (%) | Thickness (µm) |
|---|---|---|---|---|---|
| Fibers | 8.92 | 1.45 | 0.59 | 0.240 | 100 |
| PDMS coating | 18.08 | 1.69 | 1.25 | 0.186 | 100 |
| Fibers-PDMS coating | 35.61 | 1.51 | 2.37 | 0.125 | 217 |
Table 1 Mechanical parameters calculated based on tensile tests.
| sample | Load (N) | Extension (mm) | Tensile strength (MPa) | Elongation (%) | Thickness (µm) |
|---|---|---|---|---|---|
| Fibers | 8.92 | 1.45 | 0.59 | 0.240 | 100 |
| PDMS coating | 18.08 | 1.69 | 1.25 | 0.186 | 100 |
| Fibers-PDMS coating | 35.61 | 1.51 | 2.37 | 0.125 | 217 |
Fig. 8. (a) Schematic of hydrophobic structure; (b) the variation of water contact angle on the fiber-PDMS composite coating during sandpaper abrasion test; The water contact angle of (c) core-shell fibers coating and (d) PDMS coating.
Fig. 9. EIS results of blank PDMS and fiber-PDMS composite coatings tested by wet/dry cyclic corrosion tests (pH=11.8): (a, and d) Nyquist plots; (b-f) Bode and phase plots; (g) the values of |Z|0.01Hz; (h) The electrical equivalent circuit used for fitting EIS results. The points and lines represent the original experimental data and their corresponding fitting, respectively.
| Coating | Time (days) | CPEdl | Rf (kΩ·cm2) | CPEf | Rct (kΩ cm2) | |Z| (kΩ cm2) | ηeR% | ||
|---|---|---|---|---|---|---|---|---|---|
| Y0, dl (s·secn) | ndl | Y0, f (s·secn) | nf | ||||||
| Blank coating | 1 | 4.35 × 10-4 | 0.76 | 6.03 | 2.46 × 10-4 | 0.65 | 0.29 | 4.76 | - |
| 3 | 7.00 × 10-4 | 0.73 | 6.11 | 3.61 × 10-4 | 0.64 | 0.18 | 3.90 | - | |
| 5 | 9.50 × 10-4 | 0.68 | 6.36 | 6.95 × 10-4 | 0.61 | 0.12 | 2.71 | - | |
| 10 | 9.30 × 10-4 | 0.69 | 6.00 | 8.92 × 10-4 | 0.57 | 0.13 | 2.64 | - | |
| 12 | 1.00 × 10-3 | 0. 67 | 0.11 | 7.00 × 10-4 | 0.61 | 6.11 | 2.40 | - | |
| 15 | 9.40 × 10-4 | 0.69 | 6.45 | 9.37 × 10-4 | 0.57 | 0.14 | 2.38 | - | |
| Composite Coating | 1 | 2.63 × 10-6 | 0.65 | 0.537 | 1.10 × 10-5 | 0.40 | 52.90 | 45.72 | 87.99 |
| 3 | 2.61 × 10-5 | 0.38 | 18.00 | 1.10 × 10-9 | 0.77 | 51.34 | 54.07 | 90.93 | |
| 5 | 3.10 × 10-5 | 0.28 | 29.72 | 7.80 × 10-10 | 0.79 | 66.13 | 63.86 | 93.24 | |
| 10 | 2.79 × 10-5 | 0.15 | 24.23 | 2.40 × 10-10 | 0.87 | 32.40 | 86.40 | 89.18 | |
| 12 | 1.58 × 10-5 | 0.21 | 30.85 | 2.60 × 10-10 | 0.88 | 123.10 | 89.67 | 95.96 | |
| 15 | 3.43 × 10-5 | 0.14 | 23.08 | 1.90 × 10-10 | 0.89 | 137.00 | 65.80 | 95.88 | |
Table 2 Electrochemical parameters for blank coating and fibers coating with scratch derived from wet/dry cyclic corrosion tests (pH=11.8).
| Coating | Time (days) | CPEdl | Rf (kΩ·cm2) | CPEf | Rct (kΩ cm2) | |Z| (kΩ cm2) | ηeR% | ||
|---|---|---|---|---|---|---|---|---|---|
| Y0, dl (s·secn) | ndl | Y0, f (s·secn) | nf | ||||||
| Blank coating | 1 | 4.35 × 10-4 | 0.76 | 6.03 | 2.46 × 10-4 | 0.65 | 0.29 | 4.76 | - |
| 3 | 7.00 × 10-4 | 0.73 | 6.11 | 3.61 × 10-4 | 0.64 | 0.18 | 3.90 | - | |
| 5 | 9.50 × 10-4 | 0.68 | 6.36 | 6.95 × 10-4 | 0.61 | 0.12 | 2.71 | - | |
| 10 | 9.30 × 10-4 | 0.69 | 6.00 | 8.92 × 10-4 | 0.57 | 0.13 | 2.64 | - | |
| 12 | 1.00 × 10-3 | 0. 67 | 0.11 | 7.00 × 10-4 | 0.61 | 6.11 | 2.40 | - | |
| 15 | 9.40 × 10-4 | 0.69 | 6.45 | 9.37 × 10-4 | 0.57 | 0.14 | 2.38 | - | |
| Composite Coating | 1 | 2.63 × 10-6 | 0.65 | 0.537 | 1.10 × 10-5 | 0.40 | 52.90 | 45.72 | 87.99 |
| 3 | 2.61 × 10-5 | 0.38 | 18.00 | 1.10 × 10-9 | 0.77 | 51.34 | 54.07 | 90.93 | |
| 5 | 3.10 × 10-5 | 0.28 | 29.72 | 7.80 × 10-10 | 0.79 | 66.13 | 63.86 | 93.24 | |
| 10 | 2.79 × 10-5 | 0.15 | 24.23 | 2.40 × 10-10 | 0.87 | 32.40 | 86.40 | 89.18 | |
| 12 | 1.58 × 10-5 | 0.21 | 30.85 | 2.60 × 10-10 | 0.88 | 123.10 | 89.67 | 95.96 | |
| 15 | 3.43 × 10-5 | 0.14 | 23.08 | 1.90 × 10-10 | 0.89 | 137.00 | 65.80 | 95.88 | |
Fig. 10. EIS results of blank PDMS and fiber-PDMS composite coatings tested by wet/dry cyclic corrosion tests (pH=4.0): (a, and d) Nyquist plots; (b-f) Bode and phase plots; (g) the values of |Z|0.01Hz; (h) The electrical equivalent circuit used for fitting EIS results. The points and lines represent the original experimental data and their corresponding fitting, respectively.
| Coating | Time (days) | CPEdl | Rf (kΩ·cm2) | CPEf | Rct (kΩ cm2) | |Z| (kΩ cm2) | ηeR% | ||
|---|---|---|---|---|---|---|---|---|---|
| Y0, dl (s·secn) | ndl | Y0, f (s·secn) | nf | ||||||
| Blank coating | 1 | 8.70 × 10-6 | 0.73 | 2.43 | 4.02 × 10-5 | 0.73 | 0.094 | 2.97 | - |
| 3 | 5.95 × 10-6 | 0.78 | 2.15 | 1.46 × 10-4 | 0.67 | 0.098 | 2.57 | - | |
| 5 | 7.96 × 10-6 | 0.72 | 2.12 | 4.10 × 10-4 | 0.61 | 0.11 | 2.41 | - | |
| 8 | 8.56 × 10-6 | 0.71 | 2.09 | 4.10 × 10-4 | 0.65 | 0.11 | 2.35 | - | |
| 10 | 6.21 × 10-6 | 0.71 | 2.11 | 5.30 × 10-3 | 0.69 | 0.089 | 2.37 | - | |
| 15 | 7.37 × 10-4 | 0.69 | 0.06 | 1.48 × 10-5 | 0.60 | 1.96 | 2.13 | - | |
| Composite Coating | 1 | 3.80 × 10-5 | 0.70 | 3.66 | 5.1 × 10-9 | 0.68 | 8.17 | 11.60 | 78.66 |
| 3 | 4.35 × 10-11 | 1.00 | 23.40 | 3.9 × 10-5 | 0.51 | 3.74 | 23.90 | 91.72 | |
| 5 | 4.04 × 10-11 | 1.00 | 65.10 | 7.1 × 10-6 | 0.50 | 10.20 | 69.50 | 97.04 | |
| 8 | 6.38 × 10-6 | 0.55 | 6.70 | 2.2 × 10-9 | 0.72 | 55.30 | 57.20 | 96.45 | |
| 10 | 1.96 × 10-10 | 0.90 | 48.10 | 6.7 × 10-6 | 0.52 | 8.50 | 52.90 | 96.11 | |
| 15 | 7.00 × 10-6 | 0.52 | 8.78 | 2.7 × 10-10 | 0.86 | 47.00 | 51.50 | 96.38 | |
Table 3 The electrochemical parameters for the blank coating and fiber-PDMS composite coating with scratch derived from wet/dry cyclic corrosion tests (pH=4.0).
| Coating | Time (days) | CPEdl | Rf (kΩ·cm2) | CPEf | Rct (kΩ cm2) | |Z| (kΩ cm2) | ηeR% | ||
|---|---|---|---|---|---|---|---|---|---|
| Y0, dl (s·secn) | ndl | Y0, f (s·secn) | nf | ||||||
| Blank coating | 1 | 8.70 × 10-6 | 0.73 | 2.43 | 4.02 × 10-5 | 0.73 | 0.094 | 2.97 | - |
| 3 | 5.95 × 10-6 | 0.78 | 2.15 | 1.46 × 10-4 | 0.67 | 0.098 | 2.57 | - | |
| 5 | 7.96 × 10-6 | 0.72 | 2.12 | 4.10 × 10-4 | 0.61 | 0.11 | 2.41 | - | |
| 8 | 8.56 × 10-6 | 0.71 | 2.09 | 4.10 × 10-4 | 0.65 | 0.11 | 2.35 | - | |
| 10 | 6.21 × 10-6 | 0.71 | 2.11 | 5.30 × 10-3 | 0.69 | 0.089 | 2.37 | - | |
| 15 | 7.37 × 10-4 | 0.69 | 0.06 | 1.48 × 10-5 | 0.60 | 1.96 | 2.13 | - | |
| Composite Coating | 1 | 3.80 × 10-5 | 0.70 | 3.66 | 5.1 × 10-9 | 0.68 | 8.17 | 11.60 | 78.66 |
| 3 | 4.35 × 10-11 | 1.00 | 23.40 | 3.9 × 10-5 | 0.51 | 3.74 | 23.90 | 91.72 | |
| 5 | 4.04 × 10-11 | 1.00 | 65.10 | 7.1 × 10-6 | 0.50 | 10.20 | 69.50 | 97.04 | |
| 8 | 6.38 × 10-6 | 0.55 | 6.70 | 2.2 × 10-9 | 0.72 | 55.30 | 57.20 | 96.45 | |
| 10 | 1.96 × 10-10 | 0.90 | 48.10 | 6.7 × 10-6 | 0.52 | 8.50 | 52.90 | 96.11 | |
| 15 | 7.00 × 10-6 | 0.52 | 8.78 | 2.7 × 10-10 | 0.86 | 47.00 | 51.50 | 96.38 | |
Fig. 11. (a, and b) SEM images and (c, and d) EDS analysis of the scratched fiber-PDMS composite coating (a, and c) after 0 day (b, and d) 15 days of wet/dry cyclic corrosion tests (pH = 11.8).
Fig. 12. SKP maps for the fiber-PDMS composite coating after different immersion times in wet/dry cyclic corrosion tests (pH = 11.8): (a) 1 day, and (b) 15 days.
Fig. 13. Digital photographs of blank coating ((a) 0, (b) 5, and (c) 15 days) and fiber-PDMS composite coating ((d) 0, (e) 5, and (f) 15 days) during wet/dry cyclic corrosion tests (pH=11.8) (scale bar = 1 cm).
Fig. 14. (a, and b) SEM images and (c, and d) EDS analysis of the scratched fiber-PDMS composite coating (a, and c) after 0 day (b, and d) 5 days of wet/dry cyclic corrosion tests (pH = 4.0).
Fig. 16. Digital photographs of blank coating ((a) 0, (b) 5, and (c) 15 days) and fiber-PDMS composite coating ((d) 0, (e) 5, and (f) 15 days) during wet/dry cyclic corrosion tests (pH=4.0) (scale bar = 1 cm).
Fig. 17. (a) Diffusion models of different nanofibers in the coatings (M1, M2, M3), (b, d) the diffusion rate of (Cl-) concentration in different positions from the top of the coating at monitoring point (M4: A-1 µm, B-5 µm, C-11 µm and D-19 µm) and (c) simulation of diffusion kinetics of water in nanofiber coatings at different time points.
Fig. 18. (a) Optical images of the scratched fiber-PDMS composite coating after 12 days of wet/dry cyclic corrosion tests (pH = 11.8), (b) the FT-IR spectra of OA+AVR coating, (c-e) FT-IR mapping test by the FT-IR microscope.
Fig. 20. Schematic of self-healing and wear-resistance performance for fiber-PDMS composite coating: (a) before immersion and (b) after immersion in the corrosive media, (c) in alkaline NaCl solution and (d) in acidic NaCl solution.
Fig. 19. (a) Optical images of the scratched fiber-PDMS composite coating after 5 days of wet/dry cyclic corrosion tests (pH=4.0), (b) the FT-IR spectra of OA+AVR coating, (c-e) FT-IR mapping test by the FT-IR microscope.
| [1] | M. Attaei, L.M. Calado, M.G. Taryba, Y. Morozov, R.A. Shakoor, R. Kahraman, A.C. Marques, M.F. Montemor, Autonomous self-healing in epoxy coatings pro- vided by high efficiency isophorone diisocyanate (IPDI) microcapsules for pro- tection of carbon steel, Prog.Org. Coat. 139 (2019) 105445. |
| [2] | A. Habibiyan, B. Ramezanzadeh, M. Mahdavian, G. Bahlakeh, M. Kasaeian, Rational assembly of mussel-inspired polydopamine (PDA)-Zn (II) complex nanospheres on graphene oxide framework tailored for robust self-healing an- ti-corrosion coatings application, Chem.Eng. J. 30 (2019) 123630. |
| [3] | R. Mohammadkhani, M. Ramezanzadeh, S. Saadatmandi, B. Ramezanzadeh, De- signing a dual-functional epoxy composite system with self-healing/barrier an- ti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmen- tal stability and non-toxicity, Chem.Eng. J. 382 (2020) 122819. |
| [4] | Y. Ye, D. Yang, D. Zhang, H. Chen, H. Zhao, X. Li, L. Wang, POSS-tetraaniline modified graphene for active corrosion protection of epoxy-based organic coat- ing, Chem.Eng. J. 383 (2020) 123160. |
| [5] | P. Xiong, J. Yan, P. Wang, Z. Jia, W. Zhou, W. Yuan, Y. Li, Y. Liu, Y. Cheng, D. Chen, Y. Zheng, A pH-sensitive self-healing coating for biodegradable mag- nesium implants, Acta Biomater. 98 (2019) 160-173. |
| [6] | D.Y. Zhu, M.Z. Rong, M.Q. Zhang, Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation, Prog.Polym. Sci. 49- 50 (2015) 175-220. |
| [7] | Z. Jia, P. Xiong, Y. Shi, W. Zhou, Y. Cheng, Y. Zheng, T. Xi, S. Wei, Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: a pH-responsive design, J. Mater. Chem. B 4 (2016) 2498-2511. |
| [8] | M.W. Lee, S. An, S.S. Yoon, A.L. Yarin, Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics, Adv.Colloid. Interface Sci. 252 (2018) 21-37. |
| [9] | S.N. Khorasani, S. Ataei, R.E. Neisiany, Microencapsulation of a coconut oil-based alkyd resin into poly(melamine-urea-formaldehyde) as shell for self- -healing purposes, Prog.Org. Coat. 111 (2017) 99-106. |
| [10] | Y. Ouyang, R. Qiu, Y. Xiao, Z. Shi, S. Hu, Y. Zhang, M. Chen, P. Wang, Magnetic fluid based on mussel inspired chemistry as corrosion-resistant coating of Nd- FeB magnetic material, Chem.Eng. J. 368 (2019) 331-339. |
| [11] | K.A. Althaqafi, J. Satterthwaite, N. Silikas, A review and current state of auto- nomic self-healing microcapsules-based dental resin composites, Dent.Mater. 3 (2019) 329-342. |
| [12] | A.M. Peterson, H. Kotthapalli, M.A.M. Rahmathullah, G.R. Palmese, Investiga- tion of interpenetrating polymer networks for self-healing applications, Com- pos. Sci. Technol. 72 (2012) 330-336. |
| [13] | M.W. Lee, S. Sett, S. An, S.S. Yoon, A.L. Yarin, Self-healing nanotextured vas- cular-like materials: Mode I crack propagation, ACS Appl. Mater. Interfaces 9 (2017) 27223-27231. |
| [14] | T.Q. Doan, L.S. Leslie, S.Y. Kim, R. Bhargava, S.R. White, N.R. Sottos, Character- ization of core-shell microstructure and self-healing performance of electro- spun fiber coatings, Polymer 107 (2016) 263-272. |
| [15] | J. Ding, J. Zhang, J. Li, D. Li, C. Xiao, H. Xiao, H. Yang, X. Zhuang, X. Chen, Electrospun polymer biomaterials, Prog.Polym. Sci. 90 (2019) 1-34. |
| [16] | J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: meth- ods, materials, and applications, Chem.Rev. 119 (2019) 5298-5415. |
| [17] | J.H. Park, P.V. Braun, Coaxial electrospinning of self-healing coatings, Adv.Mater. 22 (2010) 4 96-4 99. |
| [18] | M.W. Lee, S. An, C. Lee, M. Liou, A.L. Yarin, S.S. Yoon, Hybrid self-healing matrix using core-shell nanofibers and capsuleless microdroplets, ACS Appl. Mater. In- terfaces 6 (2014) 10461-10468. |
| [19] | J. Han, L. Xiong, X. Jiang, X. Yuan, Y. Zhao, D. Yang, Bio-functional electrospun nanomaterials: from topology design to biological applications, Prog.Polym. Sci. 91 (2019) 1-28. |
| [20] | R. Jayakumar, M. Prabaharan, S.V. Nair, H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications, Biotechnol Adv. 28 (2010) 142-150. |
| [21] | S. An, M. Liou, K.Y. Song, H.S. Jo, M.W. Lee, S.S. Al-Deyab, A.L. Yarin, S.S. Yoon, Highly flexible transparent self-healing composite based on electro- spun core-shell nanofibers produced by coaxial electrospinning for anti-corro- sion and electrical insulation, Nanoscale 7 (2015) 17778-17785. |
| [22] | M.W. Lee, S. Sett, S.S. Yoon, A.L. Yarin, Fatigue of self-healing nanofiber-based composites: static test and subcritical crack propagation, ACS Appl. Mater. In- terfaces 8 (2016) 18462-18470. |
| [23] | Y. Wang, C.M. Wu, W. Li, H.Y. Li, Y.C. Li, X.Y. Zhang, L.L. Sun, Effect of bionic hydrophobic structures on the corrosion performance of Fe-based amorphous metallic coatings, Surf.Coat. Technol. 416 (2021) 127176. |
| [24] | T. Yan, S. Zhang, L. Feng, Y. Qiang, L. Lu, D. Fu, Y. Wen, J. Chen, W. Li, B. Tan, Investigation of imidazole derivatives as corrosion inhibitors of copper in sul- furic acid: Combination of experimental and theoretical researches, J.Taiwan Inst. Chem. E. 106 (2019) 118-129. |
| [25] | V.N. Ayukayeva, G.I. Boiko, N.P. Lyubchenko, R.G. Sarmurzina, R.F. Mukhame- dova, U.S. Karabalin, S.A. Dergunov, Polyoxyethylene sorbitan trioleate surfac- tant as an effective corrosion inhibitor for carbon steel protection, Colloid. Surf. A. 579 (2019) 123636. |
| [26] | V. Saraswat, M. Yadav, Computational and electrochemical analysis on quinox- alines as corrosion inhibitors for mild steel in acidic medium, J.Mol. Liq. 297 (2019) 111883. |
| [27] | I.B. Obot, A. Meroufel, I.B. Onyeachu, A. Alenazi, A.A. Sorour, Corrosion in- hibitors for acid cleaning of desalination heat exchangers: Progress, challenges and future perspectives, J.Mol. Liq. 296 (2019) 111760. |
| [28] | M. Pakiet, J. Tedim, I. Kowalczyk, B. Brycki, Functionalised novel gemini surfac- tants as corrosion inhibitors for mild steel in 50 mM NaCl: Experimental and theoretical insights, Colloid.Surface. A. 580 (2019) 123699. |
| [29] | A. Yabuki, T. Shiraiwa, I.W. Fathona, pH-controlled self-healing polymer coat- ings with cellulose nanofibers providing an effective release of corrosion in- hibitor, Corros.Sci. 103 (2016) 117-123. |
| [30] | C. Verma, M.A. Quraishi, E.E. Ebenso, I. Bahadur, A green and sustainable ap- proach for mild steel acidic corrosion inhibition using leaves extract: experi- mental and DFT studies, J.Bio- Tribo-Corros. 4 (2018) 33. |
| [31] | J. Zhang, Y. Cheng, M. Tebyetekerwa, S. Meng, M. Zhu, Y. Lu, Stiff-Soft”binary synergistic aerogels with superflexibility and high thermal insulation perfor- mance, Adv.Funct. Mater. 29 (2019) 1806407. |
| [32] | W. Fan, Y. Zhang, W. Li, W. Wang, X. Zhao, L. Song, Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induc- tion heating, Chem.Eng. J. 368 (2019) 1033-1044. |
| [33] | J. Wang, M. Windbergs, Controlled dual drug release by coaxial electrospun fibers - Impact of the core fluid on drug encapsulation and release, Int.J. Pharm. 556 (2019) 363-371. |
| [34] | D.S. de Almeida, E.H. Duarte, E.M. Hashimoto, F.R.B. Turbiani, E.C. Muniz, P.R.d.S.de Souza, M.L. Gimenes, L.D. Martins, Development and characteriza- tion of electrospun cellulose acetate nanofibers modified by cationic surfac- tant, Polymer Test 81 (2020) 106206. |
| [35] | K. Liu, Z. Huang, J. Dai, Y. Jiang, G. Yang, Y. Liu, C. Lin, Y. Lv, M. Liu, Fabrication of amino-modified electrospun nanofibrous cellulose membrane and adsorp- tion for typical organoarsenic contaminants: Behavior and mechanism, Chem.Eng. J. 382 (2020) 122775. |
| [36] | V.S. Naragund, P.K. Panda, Electrospinning of cellulose acetate nanofiber mem- brane using methyl ethyl ketone and N, N-Dimethylacetamide as solvents, Mater.Chem. Phys. 240 (2020) 122147. |
| [37] | X. Ji, W. Wang, W. Li, X. Zhao, A. Liu, X. Wang, X. Zhang, W. Fan, Y. Wang, Z. Lu, S. Liu, H. Shi, pH-responsible self-healing performance of coating with dual-action core-shell electrospun fibers, J.Taiwan Inst. Chem. Eng. 104 (2019) 227-239. |
| [38] | B.J. Sundell, D.J. Harrigan, S.C. Hayden, J.T. Vaughn, K.A. Guzan, J.A. Lawrence Iii, M.L. Ostraat, Improved gas transport properties of cellulose acetate via sub- -Tg acid-catalyzed silanation, J. Membr. Sci. 573 (2019) 448-454. |
| [39] | S. Qiu, W. Li, W. Zheng, H. Zhao, L. Wang, Synergistic effect of polypyrrole-in- tercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution, ACS Appl. Mater. Interfaces 9 (2017) 34294-34304. |
| [40] | D. Sun, Y.B. Chong, K. Chen, J. Yang, Chemically and thermally stable iso- cyanate microcapsules having good self-healing and self-lubricating perfor- mances, Chem.Eng. J. 346 (2018) 289-297. |
| [41] | P. Xiong, Z. Jia, W. Zhou, J. Yan, P. Wang, W. Yuan, Y. Li, Y. Cheng, Z. Guan, Y. Zheng, Osteogenic and pH stimuli-responsive self-healing coating on biomedical Mg-1Ca alloy, Acta Biomater. 92 (2019) 336-350. |
| [42] | W. Wang, H. Wang, J. Zhao, X. Wang, C. Xiong, L. Song, R. Ding, P. Han, W. Li, Self-healing performance and corrosion resistance of graphene oxide-meso- porous silicon layer-nanosphere structure coating under marine alternating hydrostatic pressure, Chem.Eng. J. 361 (2019) 792-804. |
| [43] | X. Liu, C. Gu, Z. Wen, B. Hou, Improvement of active corrosion protection of carbon steel by water-based epoxy coating with smart CeO 2 nanocontainers, Prog.Org. Coat. 115 (2018) 195-204. |
| [44] | N. Notghi, B. Ramezanzadeh, M. Mahdavian, In-situ synthesis of Zn doped polyaniline on graphene oxide for inhibition of mild steel corrosion in 3.5 wt. % chloride solution, J.Ind. Eng. Chem. 63 (2018) 322-339. |
| [1] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
