J. Mater. Sci. Technol. ›› 2021, Vol. 88: 66-78.DOI: 10.1016/j.jmst.2021.01.065
Previous Articles Next Articles
Kai Xua, Keke Changa,b,*(
), Yong Duc, Liping Wanga,*(
)
Received:2020-09-09
Revised:2020-12-23
Accepted:2021-01-15
Published:2021-03-19
Online:2021-03-19
Contact:
Keke Chang,Liping Wang
About author:wangliping@nimte.ac.cn(L. Wang).Kai Xu, Keke Chang, Yong Du, Liping Wang. Design of novel NiSiAlY alloys in marine salt-spray environment: Part I. Al-Si-Y and Ni-Si-Y subsystems[J]. J. Mater. Sci. Technol., 2021, 88: 66-78.
| Exp. contents | Details | Techniques | Refs. | QMa |
|---|---|---|---|---|
| τ1-Al2Si2Y | Sintering, 800 °C for 12 h or 1000 °C for 20 h | XRD, DSC | [ | + |
| τ2-AlSiY | Arc-melting, annealed at 600 °C for 500 h | XRD | [ | + |
| τ3-Al3SiY6 | Arc-melting, annealed at 950 °C for 400 h | XRD | [ | + |
| τ4-AlSi2Y2 | Pre-reacting at 900 °C for 20 h, then reacting at 1000 °C for 50 h and 1100 °C for 50 h for the two subsequent tempering steps | XRD | [ | + |
| τ5-Al14SiY5 | Sintering, 800 °C for 12 h or 1000 °C for 20 h | XRD, DSC | [ | + |
| τ6-Al3Si2Y2 | Arc-melting, annealed at 500 °C for 3 weeks | XRD | [ | + |
| τ7-Al1.4Si0.6Y | Arc-melting, annealed at 500 °C for 750 h | XRD | [ | + |
| τ8-Al2SiY | Same phase as τ6 | XRD | [ | - |
| Vertical sections | 92 wt.% Al, 0∼8 wt.% Y; 1 wt.% Y, 0∼12 wt.% Y; 3 wt.% Si, 0∼14 wt.% Si | DTA | [ | + |
| Invariant reactions | Reaction types and temperatures | DTA, OM | [ | + |
| Isothermal section | Arc-melting, annealed at 500 °C for 750 h, 0-33.3 at.% Y | XRD | [ | + |
Table 1 Summary of the experimental information in the Al-Si-Y system.
| Exp. contents | Details | Techniques | Refs. | QMa |
|---|---|---|---|---|
| τ1-Al2Si2Y | Sintering, 800 °C for 12 h or 1000 °C for 20 h | XRD, DSC | [ | + |
| τ2-AlSiY | Arc-melting, annealed at 600 °C for 500 h | XRD | [ | + |
| τ3-Al3SiY6 | Arc-melting, annealed at 950 °C for 400 h | XRD | [ | + |
| τ4-AlSi2Y2 | Pre-reacting at 900 °C for 20 h, then reacting at 1000 °C for 50 h and 1100 °C for 50 h for the two subsequent tempering steps | XRD | [ | + |
| τ5-Al14SiY5 | Sintering, 800 °C for 12 h or 1000 °C for 20 h | XRD, DSC | [ | + |
| τ6-Al3Si2Y2 | Arc-melting, annealed at 500 °C for 3 weeks | XRD | [ | + |
| τ7-Al1.4Si0.6Y | Arc-melting, annealed at 500 °C for 750 h | XRD | [ | + |
| τ8-Al2SiY | Same phase as τ6 | XRD | [ | - |
| Vertical sections | 92 wt.% Al, 0∼8 wt.% Y; 1 wt.% Y, 0∼12 wt.% Y; 3 wt.% Si, 0∼14 wt.% Si | DTA | [ | + |
| Invariant reactions | Reaction types and temperatures | DTA, OM | [ | + |
| Isothermal section | Arc-melting, annealed at 500 °C for 750 h, 0-33.3 at.% Y | XRD | [ | + |
| Compounds | Space group | Lattice parameters (Å) | Refs. | Lattice parameters (FPa, Å) | Enthalpy (FP, kJ/mol) | Enthalpy (CALb, kJ/mol) | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| a | b | c | a | b | c | |||||
| Al-Si-Y | ||||||||||
| τ1-Al2Si2Y | P3¯m1 | 4.181 | 6.559 | [ | 4.210 | 6.575 | -38.09 | -38.00 | ||
| τ2-AlSiY | Cmcm | 3.99476(7) | 10.2983(2) | 5.7085(1) | [ | 4.010 | 10.324 | 5.719 | -61.23 | -61.23 |
| τ3-Al3SiY6 | I4/mcm | 11.581(6) | 15.039(3) | [ | 11.699 | 15.221 | -41.49 | -54.00 | ||
| τ4-AlSi2Y2 | Immm | 4.050(1) | 5.748(1) | 8.663(2) | [ | 4.073 | 5.750 | 8.728 | -70.75 | -70.00 |
| τ5-Al14SiY5 | P63/mmc | 6.247 | 4.590 | [ | 6.287 | 22.949 | -43.31 | -46.20 | ||
| τ6-Al3Si2Y2 | C2/m | 10.220(3) | 4.0354(9) | 6.617(2) 101.36 (3) ˚ | [ | 10.202 | 4.052 | 6.635 | -53.60 | -53.71 |
| τ7-Al1.4Si0.6Y | - | - | - | - | [ | - | - | - | - | -63.33 |
| Ni-Si-Y | ||||||||||
| τ1-Ni15Si2Y2 | P63/mmc | 8.289 | 8.085 | [ | 8.278 | 8.351 | 8.088 | -38.54 | -39.58 | |
| τ3-Ni6Si6Y | P4¯b2 | 7.7351(1) | 11.1278(2) | [ | 7.998 | 11.774 | -32.89 | -53.08 | ||
| τ4-Ni4SiY | Cmmm | 5.0482(3) | 8.2017(4) | 3.9474(2) | [ | 5.092 | 8.191 | 3.944 | -62.52 | -62.07 |
| τ5-Ni2Si2Y | I4/mmm | 3.959(3) | 9.548 | [ | 3.988 | 9.536 | -84.67 | -85.00 | ||
| τ6-Ni3Si5Y2 | Ibam | 5.6453(2) | 9.5651(4) | 11.1284(6) | [ | 5.667 | 9.594 | 11.150 | -76.84 | -77.00 |
| τ7-Ni6Si2Y3 | Im3¯m | 8.77979 | [ | 8.798 | -66.03 | -65.10 | ||||
| τ8-NiSi2Y | Cmcm | 3.99558 | 16.50299 | 3.95844 | [ | 3.996 | 16.479 | 3.983 | -81.60 | -81.00 |
| τ9-NiSiY | Pnma | 4.155(4) | 6.870(5) | 7.205(5) | [ | 4.162 | 6.882 | 7.176 | -81.11 | -81.67 |
| τ10-NiSi2Y3 | Pnma | 11.505 | 4.189 | 11.388 | [ | 11.277 | 4.124 | 11.294 | -75.09 | -73.67 |
| τ11-NiSi3Y3 | Immm | 3.9605(5) | 4.125(1) | 17.63(1) | [ | 3.930 | 4.158 | 17.490 | -78.35 | -84.29 |
| τ12-Ni10Si2Y | I4/mmm | 8.20843(3) | 4.67155(3) | [ | 8.245 | 8.206 | 4.710 | -39.41 | -40.67 | |
| τ13-Ni5Si3Y | Pnma | 3.779(5) | 6.706(2) | 18.62(2) | [ | 3.802 | 6.655 | 18.747 | -71.70 | -68.44 |
| τ14-Ni12Si4Y3 | P63/mmc | - | - | - | [ | 8.174 | 8.732 | -64.01 | -63.89 | |
| τ15-NiSi3Y | Amm2 | 3.94043 | 21.04579 | 3.9588 | [ | 3.941 | 21.017 | 3.970 | -66.88 | -67.00 |
| τ16-Ni2SiY | Pnma | - | - | - | [ | 5.446 | 6.398 | 7.077 | -73.32 | -73.25 |
| τ17-Ni49Si20Y7 | I4¯3m | 12.38344 | [ | 12.402 | -57.55 | -57.00 | ||||
| τ18-Ni16Si7Y6 | Fm3¯m | 11.74578 | [ | 11.802 | -67.41 | -68.62 | ||||
| τ19-Ni0.8Si1.2Y | P6/mmm | 3.973 | 4.100 | [ | 3.961 | 4.074 | -78.68 | -86.67 | ||
Table 2 Calculated lattice parameters and formation enthalpies for the ternary compounds in Al-Si-Y and Ni-Si-Y systems.
| Compounds | Space group | Lattice parameters (Å) | Refs. | Lattice parameters (FPa, Å) | Enthalpy (FP, kJ/mol) | Enthalpy (CALb, kJ/mol) | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| a | b | c | a | b | c | |||||
| Al-Si-Y | ||||||||||
| τ1-Al2Si2Y | P3¯m1 | 4.181 | 6.559 | [ | 4.210 | 6.575 | -38.09 | -38.00 | ||
| τ2-AlSiY | Cmcm | 3.99476(7) | 10.2983(2) | 5.7085(1) | [ | 4.010 | 10.324 | 5.719 | -61.23 | -61.23 |
| τ3-Al3SiY6 | I4/mcm | 11.581(6) | 15.039(3) | [ | 11.699 | 15.221 | -41.49 | -54.00 | ||
| τ4-AlSi2Y2 | Immm | 4.050(1) | 5.748(1) | 8.663(2) | [ | 4.073 | 5.750 | 8.728 | -70.75 | -70.00 |
| τ5-Al14SiY5 | P63/mmc | 6.247 | 4.590 | [ | 6.287 | 22.949 | -43.31 | -46.20 | ||
| τ6-Al3Si2Y2 | C2/m | 10.220(3) | 4.0354(9) | 6.617(2) 101.36 (3) ˚ | [ | 10.202 | 4.052 | 6.635 | -53.60 | -53.71 |
| τ7-Al1.4Si0.6Y | - | - | - | - | [ | - | - | - | - | -63.33 |
| Ni-Si-Y | ||||||||||
| τ1-Ni15Si2Y2 | P63/mmc | 8.289 | 8.085 | [ | 8.278 | 8.351 | 8.088 | -38.54 | -39.58 | |
| τ3-Ni6Si6Y | P4¯b2 | 7.7351(1) | 11.1278(2) | [ | 7.998 | 11.774 | -32.89 | -53.08 | ||
| τ4-Ni4SiY | Cmmm | 5.0482(3) | 8.2017(4) | 3.9474(2) | [ | 5.092 | 8.191 | 3.944 | -62.52 | -62.07 |
| τ5-Ni2Si2Y | I4/mmm | 3.959(3) | 9.548 | [ | 3.988 | 9.536 | -84.67 | -85.00 | ||
| τ6-Ni3Si5Y2 | Ibam | 5.6453(2) | 9.5651(4) | 11.1284(6) | [ | 5.667 | 9.594 | 11.150 | -76.84 | -77.00 |
| τ7-Ni6Si2Y3 | Im3¯m | 8.77979 | [ | 8.798 | -66.03 | -65.10 | ||||
| τ8-NiSi2Y | Cmcm | 3.99558 | 16.50299 | 3.95844 | [ | 3.996 | 16.479 | 3.983 | -81.60 | -81.00 |
| τ9-NiSiY | Pnma | 4.155(4) | 6.870(5) | 7.205(5) | [ | 4.162 | 6.882 | 7.176 | -81.11 | -81.67 |
| τ10-NiSi2Y3 | Pnma | 11.505 | 4.189 | 11.388 | [ | 11.277 | 4.124 | 11.294 | -75.09 | -73.67 |
| τ11-NiSi3Y3 | Immm | 3.9605(5) | 4.125(1) | 17.63(1) | [ | 3.930 | 4.158 | 17.490 | -78.35 | -84.29 |
| τ12-Ni10Si2Y | I4/mmm | 8.20843(3) | 4.67155(3) | [ | 8.245 | 8.206 | 4.710 | -39.41 | -40.67 | |
| τ13-Ni5Si3Y | Pnma | 3.779(5) | 6.706(2) | 18.62(2) | [ | 3.802 | 6.655 | 18.747 | -71.70 | -68.44 |
| τ14-Ni12Si4Y3 | P63/mmc | - | - | - | [ | 8.174 | 8.732 | -64.01 | -63.89 | |
| τ15-NiSi3Y | Amm2 | 3.94043 | 21.04579 | 3.9588 | [ | 3.941 | 21.017 | 3.970 | -66.88 | -67.00 |
| τ16-Ni2SiY | Pnma | - | - | - | [ | 5.446 | 6.398 | 7.077 | -73.32 | -73.25 |
| τ17-Ni49Si20Y7 | I4¯3m | 12.38344 | [ | 12.402 | -57.55 | -57.00 | ||||
| τ18-Ni16Si7Y6 | Fm3¯m | 11.74578 | [ | 11.802 | -67.41 | -68.62 | ||||
| τ19-Ni0.8Si1.2Y | P6/mmm | 3.973 | 4.100 | [ | 3.961 | 4.074 | -78.68 | -86.67 | ||
Fig. 1. (a) Constructed isothermal section of the Al-Si-Y system at 500 °C based on the reported experimental results. The solid lines are depicted based on experimental results [10], while the dashed lines are extrapolated based on other Al-Si-RE (RE = Gd, Dy, Ho,and Er) systems [47,48,50,51]; (b) calculated isothermal section of the Al-Si-Y system at 500 °C in this work.
Fig. 2. (a) Constructed isothermal section of the Ni-Si-Y system at 600 °C based on the reported experimental results. The solid lines are depicted based on the reported Ni-Si-RE (RE = Ce, Gd, Dy, Ho, Er, and Y) systems [11,53,55,57,58,60,61], while the dashed lines are extrapolated; (b) (c) calculated isothermal section of the Ni-Si-Y system at 600 and 800 °C in this work.
| Symbols | Reactions | T (℃) | Liquid comp. (at.%) | |
|---|---|---|---|---|
| Al/Ni | Si | |||
| Al-Si-Y | ||||
| U1 | L + SiY⇋βSi5Y3+τ4 | 1620.1 | 20.6 | 45.1 |
| U2 | L + Si3Y5⇋Si4Y5+τ3 | 1515.4 | 45.4 | 6.0 |
| U3 | L+τ4⇋βSi5Y3+τ2 | 1491.1 | 40.8 | 33.4 |
| U4 | L+τ4⇋τ2+τ7 | 1425.9 | 58.9 | 12.3 |
| U5 | L+τ4⇋Al2Y + SiY | 1423.0 | 55.8 | 7.4 |
| U6 | L+τ4⇋Al2Y+τ7 | 1422.1 | 58.7 | 8.9 |
| E1 | L⇋Al2Y+τ5+τ7 | 1390.1 | 63.4 | 8.6 |
| U7 | L+τ7⇋τ2+τ5 | 1383.5 | 62.3 | 11.9 |
| U8 | L + SiY⇋Al2Y + Si4Y5 | 1380.9 | 54.1 | 4.1 |
| U9 | L + Si4Y5⇋Al2Y+τ3 | 1322.2 | 52.9 | 2.1 |
| U10 | L+βSi2Y⇋αSi2Y+βSi5Y3 | 1254.0 | 21.0 | 61.7 |
| U11 | L + Si3Y5⇋(αY)+τ3 | 1207.9 | 13.0 | 3.5 |
| U12 | L + Al2Y⇋AlY+τ3 | 1136.6 | 48.9 | - |
| E2 | L⇋AlY + Al2Y3+τ3 | 1083.6 | 43.8 | - |
| U13 | L + Al2Y⇋βAl3Y+τ5 | 979.9 | 87.4 | - |
| U14 | L + Al2Y3⇋AlY2+τ3 | 979.0 | 29.2 | - |
| E3 | L⇋(αY)+AlY2+τ3 | 956.7 | 26.4 | - |
| U15 | L+αSi2Y⇋(Si)+βSi5Y3 | 928.1 | 43.5 | 46.5 |
| P1 | L+τ2+τ5⇋τ6 | 902.5 | 71.0 | 18.7 |
| P2 | L+βSi5Y3+τ2⇋τ1 | 794.5 | 58.4 | 33.3 |
| U16 | L+βSi5Y3⇋(Si)+τ1 | 793.7 | 57.6 | 34.2 |
| U17 | L+τ2⇋τ1+τ6 | 788.9 | 59.9 | 32.0 |
| U18 | L+βAl3Y⇋αAl3Y+τ5 | 644.0 | 96.8 | 0.1 |
| E4 | L⇋(Al)+αAl3Y+τ5 | 637.2 | 97.0 | 0.1 |
| U | L+αAl3Y⇋(Al)+τ5 [ | 638 | 91.7 | 1 |
| U19 | L+τ5⇋(Al)+τ6 | 586.2 | 86.6 | 10.4 |
| E | L⇋(Al)+τ5+τ6 [ | 635 | 91.5 | 1.5 |
| U20 | L+τ6⇋(Al)+τ1 | 584.0 | 86.2 | 10.8 |
| 580 [ | 85 [ | 12.5 [ | ||
| E5 | L⇋(Al)+(Si)+τ1 | 568.2 | 84.7 | 13.5 |
| 570 [ | 85 [ | 13 [ | ||
| Ni-Si-Y | ||||
| E1 | L⇋SiY + Si4Y5+τ11 | 1795.6 | 2.3 | 45.5 |
| U1 | L+τ19⇋τ6+τ8 | 1770.0 | 25.3 | 51.2 |
| E2 | L⇋τ5+τ6+τ19 | 1760.9 | 34.8 | 45.0 |
| U2 | L + Si4Y5⇋Si3Y5+τ11 | 1752.8 | 45.6 | 37.7 |
| U3 | L+τ19⇋τ9+τ18 | 1747.0 | 43.0 | 27.5 |
| E3 | L⇋τ5+τ18+τ19 | 1732.4 | 46.2 | 33.1 |
| U4 | L+τ11⇋SiY+τ19 | 1684.7 | 4.0 | 58.0 |
| P1 | L + SiY+τ19⇋βSi5Y3 | 1657.3 | 3.6 | 59.4 |
| U5 | L+τ19⇋τ9+τ11 | 1630.8 | 28.3 | 25.9 |
| U6 | L+τ6⇋τ8+τ15 | 1596.7 | 11.1 | 66.5 |
| U7 | L+τ19⇋βSi5Y3+τ8 | 1594.2 | 5.7 | 64.1 |
| U8 | L+τ8⇋βSi5Y3+τ15 | 1513.0 | 4.7 | 68.3 |
| U9 | L+βSi5Y3⇋βSi2Y+τ15 | 1459.8 | 3.1 | 71.3 |
| U10 | L+τ18⇋τ4+τ14 | 1452.7 | 72.9 | 14.3 |
| P2 | L+τ9+τ18⇋τ16 | 1448.0 | 44.9 | 17.7 |
| U11 | L+τ11⇋Si3Y5+τ9 | 1423.0 | 27.6 | 21.1 |
| P3 | L+τ5+τ6⇋τ3 | 1420.0 | 50.2 | 45.3 |
| U12 | L+τ4⇋τ1+τ14 | 1386.1 | 75.9 | 14.5 |
| U13 | L+τ18⇋τ5+τ17 | 1383.1 | 63.7 | 29.6 |
| U14 | L+τ18⇋τ14+τ17 | 1381.1 | 69.7 | 24.0 |
| P4 | L+τ5+τ17⇋τ13 | 1363.9 | 63.8 | 30.2 |
| E4 | L⇋Ni5Y+τ1+τ4 | 1339.9 | 76.0 | 8.8 |
| P5 | L+βSi2Y⇋αSi2Y+τ15 | 1293.5 | 1.5 | 79.4 |
| U15 | L+τ18⇋τ7+τ16 | 1292.9 | 49.6 | 13.0 |
| U16 | L + Ni5Y⇋Ni17Y2+τ1 | 1251.2 | 87.2 | 4.5 |
| E5 | L⇋(Ni)+Ni17Y2+τ1 | 1238.6 | 88.1 | 4.5 |
| U17 | L+βNi2Si⇋αNi2Si+τ13 | 1233.6 | 66.6 | 31.3 |
| U18 | L+τ18⇋τ4+τ7 | 1227.1 | 62.8 | 8.8 |
| U19 | L+τ13⇋αNi2Si+τ17 | 1226.9 | 67.2 | 30.7 |
| E6 | L⇋αNi2Si + Ni5Si2+τ17 | 1216.5 | 68.7 | 29.6 |
| U20 | L+τ1⇋(Ni)+τ12 | 1215.4 | 81.2 | 15.6 |
| U21 | L+τ13⇋βNi2Si+τ5 | 1215.3 | 60.8 | 37.4 |
| U22 | L+τ5⇋βNi2Si+τ3 | 1200.8 | 60.0 | 38.4 |
| E7 | L⇋(Si)+αSi2Y+τ15 | 1199.7 | 1.1 | 82.5 |
| U23 | L + Ni4Y⇋Ni7Y2+Ni5Y | 1197.9 | 67.1 | 5.4 |
| U24 | L+τ14⇋τ1+τ17 | 1181.4 | 76.8 | 19.9 |
| U25 | L + Ni5Si2⇋βNi3Si+τ17 | 1174.9 | 74.7 | 23.9 |
| U26 | L+τ1⇋τ12+τ17 | 1160.2 | 77.2 | 19.8 |
| U27 | L + Ni5Y⇋Ni7Y2+τ4 | 1156.4 | 64.7 | 6.8 |
| U28 | L + Ni7Y2⇋Ni3Y+τ4 | 1141.6 | 64.0 | 6.8 |
| D1 | βNi3Si⇋αNi3Si (with L, (Ni), τ17) | 1135.6 | 78.0 | 21.0 |
| U29 | L+τ12⇋(Ni)+τ17 | 1131.7 | 77.7 | 20.0 |
| U30 | L+τ4⇋Ni3Y+τ7 | 1125.0 | 63.1 | 6.9 |
| E8 | L⇋(Ni)+αNi3Si+τ17 | 1122.3 | 77.4 | 20.9 |
| U31 | L+τ16⇋τ7+τ9 | 1107.6 | 44.0 | 12.2 |
| U32 | L+τ15⇋(Si)+τ6 | 1074.7 | 35.0 | 64.0 |
| U33 | L + Ni3Y⇋Ni2Y+τ7 | 1031.3 | 59.9 | 5.5 |
| U34 | L+τ6⇋(Si)+τ3 | 1027.9 | 37.7 | 61.7 |
| U35 | L+(Si)⇋NiSi2+τ3 | 969.6 | 40.5 | 59.4 |
| E9 | L⇋NiSi+βNi2Si+τ3 | 966.0 | 54.1 | 45.9 |
| E10 | L⇋NiSi + NiSi2+τ3 | 947.5 | 43.4 | 56.6 |
| E11 | L⇋NiY + Ni2Y+τ7 | 900.6 | 53.2 | 4.8 |
| P6 | L + Si3Y5+τ9⇋τ10 | 841.0 | 34.6 | 9.3 |
| U36 | L+τ7⇋NiY+τ9 | 840.4 | 41.6 | 8.7 |
| U37 | L+(αY)⇋Si3Y5+NiY3 | 802.9 | 27.2 | 5.9 |
| U38 | L+τ9⇋NiY+τ10 | 760.2 | 35.4 | 8.1 |
| U39 | L + Ni2Y3⇋NiY + NiY3 | 744.4 | 34.2 | 4.6 |
| U40 | L+τ10⇋NiY + Si3Y5 | 743.3 | 34.5 | 7.6 |
| E12 | L⇋NiY + Si3Y5+NiY3 | 710.2 | 33.0 | 6.4 |
Table 6 Calculated invariant reactions involving the liquid phase using the obtained parameters.
| Symbols | Reactions | T (℃) | Liquid comp. (at.%) | |
|---|---|---|---|---|
| Al/Ni | Si | |||
| Al-Si-Y | ||||
| U1 | L + SiY⇋βSi5Y3+τ4 | 1620.1 | 20.6 | 45.1 |
| U2 | L + Si3Y5⇋Si4Y5+τ3 | 1515.4 | 45.4 | 6.0 |
| U3 | L+τ4⇋βSi5Y3+τ2 | 1491.1 | 40.8 | 33.4 |
| U4 | L+τ4⇋τ2+τ7 | 1425.9 | 58.9 | 12.3 |
| U5 | L+τ4⇋Al2Y + SiY | 1423.0 | 55.8 | 7.4 |
| U6 | L+τ4⇋Al2Y+τ7 | 1422.1 | 58.7 | 8.9 |
| E1 | L⇋Al2Y+τ5+τ7 | 1390.1 | 63.4 | 8.6 |
| U7 | L+τ7⇋τ2+τ5 | 1383.5 | 62.3 | 11.9 |
| U8 | L + SiY⇋Al2Y + Si4Y5 | 1380.9 | 54.1 | 4.1 |
| U9 | L + Si4Y5⇋Al2Y+τ3 | 1322.2 | 52.9 | 2.1 |
| U10 | L+βSi2Y⇋αSi2Y+βSi5Y3 | 1254.0 | 21.0 | 61.7 |
| U11 | L + Si3Y5⇋(αY)+τ3 | 1207.9 | 13.0 | 3.5 |
| U12 | L + Al2Y⇋AlY+τ3 | 1136.6 | 48.9 | - |
| E2 | L⇋AlY + Al2Y3+τ3 | 1083.6 | 43.8 | - |
| U13 | L + Al2Y⇋βAl3Y+τ5 | 979.9 | 87.4 | - |
| U14 | L + Al2Y3⇋AlY2+τ3 | 979.0 | 29.2 | - |
| E3 | L⇋(αY)+AlY2+τ3 | 956.7 | 26.4 | - |
| U15 | L+αSi2Y⇋(Si)+βSi5Y3 | 928.1 | 43.5 | 46.5 |
| P1 | L+τ2+τ5⇋τ6 | 902.5 | 71.0 | 18.7 |
| P2 | L+βSi5Y3+τ2⇋τ1 | 794.5 | 58.4 | 33.3 |
| U16 | L+βSi5Y3⇋(Si)+τ1 | 793.7 | 57.6 | 34.2 |
| U17 | L+τ2⇋τ1+τ6 | 788.9 | 59.9 | 32.0 |
| U18 | L+βAl3Y⇋αAl3Y+τ5 | 644.0 | 96.8 | 0.1 |
| E4 | L⇋(Al)+αAl3Y+τ5 | 637.2 | 97.0 | 0.1 |
| U | L+αAl3Y⇋(Al)+τ5 [ | 638 | 91.7 | 1 |
| U19 | L+τ5⇋(Al)+τ6 | 586.2 | 86.6 | 10.4 |
| E | L⇋(Al)+τ5+τ6 [ | 635 | 91.5 | 1.5 |
| U20 | L+τ6⇋(Al)+τ1 | 584.0 | 86.2 | 10.8 |
| 580 [ | 85 [ | 12.5 [ | ||
| E5 | L⇋(Al)+(Si)+τ1 | 568.2 | 84.7 | 13.5 |
| 570 [ | 85 [ | 13 [ | ||
| Ni-Si-Y | ||||
| E1 | L⇋SiY + Si4Y5+τ11 | 1795.6 | 2.3 | 45.5 |
| U1 | L+τ19⇋τ6+τ8 | 1770.0 | 25.3 | 51.2 |
| E2 | L⇋τ5+τ6+τ19 | 1760.9 | 34.8 | 45.0 |
| U2 | L + Si4Y5⇋Si3Y5+τ11 | 1752.8 | 45.6 | 37.7 |
| U3 | L+τ19⇋τ9+τ18 | 1747.0 | 43.0 | 27.5 |
| E3 | L⇋τ5+τ18+τ19 | 1732.4 | 46.2 | 33.1 |
| U4 | L+τ11⇋SiY+τ19 | 1684.7 | 4.0 | 58.0 |
| P1 | L + SiY+τ19⇋βSi5Y3 | 1657.3 | 3.6 | 59.4 |
| U5 | L+τ19⇋τ9+τ11 | 1630.8 | 28.3 | 25.9 |
| U6 | L+τ6⇋τ8+τ15 | 1596.7 | 11.1 | 66.5 |
| U7 | L+τ19⇋βSi5Y3+τ8 | 1594.2 | 5.7 | 64.1 |
| U8 | L+τ8⇋βSi5Y3+τ15 | 1513.0 | 4.7 | 68.3 |
| U9 | L+βSi5Y3⇋βSi2Y+τ15 | 1459.8 | 3.1 | 71.3 |
| U10 | L+τ18⇋τ4+τ14 | 1452.7 | 72.9 | 14.3 |
| P2 | L+τ9+τ18⇋τ16 | 1448.0 | 44.9 | 17.7 |
| U11 | L+τ11⇋Si3Y5+τ9 | 1423.0 | 27.6 | 21.1 |
| P3 | L+τ5+τ6⇋τ3 | 1420.0 | 50.2 | 45.3 |
| U12 | L+τ4⇋τ1+τ14 | 1386.1 | 75.9 | 14.5 |
| U13 | L+τ18⇋τ5+τ17 | 1383.1 | 63.7 | 29.6 |
| U14 | L+τ18⇋τ14+τ17 | 1381.1 | 69.7 | 24.0 |
| P4 | L+τ5+τ17⇋τ13 | 1363.9 | 63.8 | 30.2 |
| E4 | L⇋Ni5Y+τ1+τ4 | 1339.9 | 76.0 | 8.8 |
| P5 | L+βSi2Y⇋αSi2Y+τ15 | 1293.5 | 1.5 | 79.4 |
| U15 | L+τ18⇋τ7+τ16 | 1292.9 | 49.6 | 13.0 |
| U16 | L + Ni5Y⇋Ni17Y2+τ1 | 1251.2 | 87.2 | 4.5 |
| E5 | L⇋(Ni)+Ni17Y2+τ1 | 1238.6 | 88.1 | 4.5 |
| U17 | L+βNi2Si⇋αNi2Si+τ13 | 1233.6 | 66.6 | 31.3 |
| U18 | L+τ18⇋τ4+τ7 | 1227.1 | 62.8 | 8.8 |
| U19 | L+τ13⇋αNi2Si+τ17 | 1226.9 | 67.2 | 30.7 |
| E6 | L⇋αNi2Si + Ni5Si2+τ17 | 1216.5 | 68.7 | 29.6 |
| U20 | L+τ1⇋(Ni)+τ12 | 1215.4 | 81.2 | 15.6 |
| U21 | L+τ13⇋βNi2Si+τ5 | 1215.3 | 60.8 | 37.4 |
| U22 | L+τ5⇋βNi2Si+τ3 | 1200.8 | 60.0 | 38.4 |
| E7 | L⇋(Si)+αSi2Y+τ15 | 1199.7 | 1.1 | 82.5 |
| U23 | L + Ni4Y⇋Ni7Y2+Ni5Y | 1197.9 | 67.1 | 5.4 |
| U24 | L+τ14⇋τ1+τ17 | 1181.4 | 76.8 | 19.9 |
| U25 | L + Ni5Si2⇋βNi3Si+τ17 | 1174.9 | 74.7 | 23.9 |
| U26 | L+τ1⇋τ12+τ17 | 1160.2 | 77.2 | 19.8 |
| U27 | L + Ni5Y⇋Ni7Y2+τ4 | 1156.4 | 64.7 | 6.8 |
| U28 | L + Ni7Y2⇋Ni3Y+τ4 | 1141.6 | 64.0 | 6.8 |
| D1 | βNi3Si⇋αNi3Si (with L, (Ni), τ17) | 1135.6 | 78.0 | 21.0 |
| U29 | L+τ12⇋(Ni)+τ17 | 1131.7 | 77.7 | 20.0 |
| U30 | L+τ4⇋Ni3Y+τ7 | 1125.0 | 63.1 | 6.9 |
| E8 | L⇋(Ni)+αNi3Si+τ17 | 1122.3 | 77.4 | 20.9 |
| U31 | L+τ16⇋τ7+τ9 | 1107.6 | 44.0 | 12.2 |
| U32 | L+τ15⇋(Si)+τ6 | 1074.7 | 35.0 | 64.0 |
| U33 | L + Ni3Y⇋Ni2Y+τ7 | 1031.3 | 59.9 | 5.5 |
| U34 | L+τ6⇋(Si)+τ3 | 1027.9 | 37.7 | 61.7 |
| U35 | L+(Si)⇋NiSi2+τ3 | 969.6 | 40.5 | 59.4 |
| E9 | L⇋NiSi+βNi2Si+τ3 | 966.0 | 54.1 | 45.9 |
| E10 | L⇋NiSi + NiSi2+τ3 | 947.5 | 43.4 | 56.6 |
| E11 | L⇋NiY + Ni2Y+τ7 | 900.6 | 53.2 | 4.8 |
| P6 | L + Si3Y5+τ9⇋τ10 | 841.0 | 34.6 | 9.3 |
| U36 | L+τ7⇋NiY+τ9 | 840.4 | 41.6 | 8.7 |
| U37 | L+(αY)⇋Si3Y5+NiY3 | 802.9 | 27.2 | 5.9 |
| U38 | L+τ9⇋NiY+τ10 | 760.2 | 35.4 | 8.1 |
| U39 | L + Ni2Y3⇋NiY + NiY3 | 744.4 | 34.2 | 4.6 |
| U40 | L+τ10⇋NiY + Si3Y5 | 743.3 | 34.5 | 7.6 |
| E12 | L⇋NiY + Si3Y5+NiY3 | 710.2 | 33.0 | 6.4 |
Fig. 3. Calculated vertical sections of the Al-Si-Y system [25,31] at (a) w(Al) = 0.92; (b) w(Si) = 0.01; (c) w(Y) = 0.03; (d) Al2Y-Si; (e) x(Si) = 0.05.
| [1] | G.W. Goward, Surf. Coat. Technol. 108 (1998) 73-79. |
| [2] |
A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Prog. Mater. Sci. 46 (2001) 505-553.
DOI URL |
| [3] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
PMID |
| [4] |
C. Jiang, L. Qian, M. Feng, H. Liu, Z. Bao, M. Chen, S. Zhu, F. Wang, J. Mater. Sci. Technol. 35 (2019) 1334-1344.
DOI URL |
| [5] |
Y. Shu, F. Wang, W. Wu, Oxid. Met. 54 (2000) 457-471.
DOI URL |
| [6] |
M. Cao, L. Liu, Z. Yu, L. Fan, L. Ying, F. Wang, Corros. Sci. 133 (2018) 165-177.
DOI URL |
| [7] |
W. Xiong, Y. Du, R.-X. Hu, J. Wang, W.W. Zhang, P. Nash, X.G. Lu, Int. J. Mater. Res. 99 (2008) 598-612.
DOI URL |
| [8] |
L. Fan, L. Liu, Z. Yu, M. Cao, Y. Li, F. Wang, Sci. Rep. 6 (2016) 29019.
DOI URL |
| [9] |
J. Jing, J. He, H. Guo, J. Mater. Sci. Technol. 35 (2019) 2038-2047.
DOI |
| [10] | A.A. Murav’eva, O.S. Zarechnyuk, E.I. Gladyshevsky, Izv. Akad. Nauk SSSR, Neorg.Mater. 7 (1971) 38-40. |
| [11] | O. Bodak, L. Muratova, I. Mokra, V. Yarovets, A. Sobolev, E. Gladyshevskii, O. Ivanov, Fazovye Prevrashcheniya i Diagrammy SostoyaniyaMetallicheskikh Sistem, 1974, pp. 182-186. |
| [12] |
N. Li, D. Li, W. Zhang, K. Chang, F. Dang, Y. Du, H.J. Seifert, Prog. Nat. Sci. Mater. Int. 29 (2019) 265-276.
DOI URL |
| [13] |
K. Xu, L. Chen, K. Chang, P. Wan, M. Li, Z. Deng, F. Huang, Q. Huang, Calphad 68 (2020), 101738.
DOI URL |
| [14] |
K. Xu, L. Shuhong, K. Chang, L. Yongpeng, D. Yong, J. Zhanpeng, J. Magnesium Alloys 9 (2021) 144-155.
DOI URL |
| [15] |
D. Huang, S. Liu, Y. Du, Calphad 68 (2020), 101693.
DOI URL |
| [16] |
S. Liu, K. Chang, D. Music, X. Chen, S. Mráz, D. Bogdanovski, M. Hans, D. Primetzhofer, Acta Mater. 196 (2020) 313-324.
DOI URL |
| [17] |
M. Lou, X. Chen, K. Xu, Z. Deng, L. Chen, J. Lv, K. Chang, L. Wang, Acta Mater. 205 (2021), 116545.
DOI URL |
| [18] |
J. Gröbner, H.L. Lukas, F. Aldinger, Calphad 20 (1996) 247-254.
DOI URL |
| [19] |
Y. Du, J.C. Schuster, Metall. Mater. Trans. A 30 (1999) 2409-2418.
DOI URL |
| [20] |
S. Liu, Y. Du, H. Chen, Calphad 30 (2006) 334-340.
DOI URL |
| [21] |
Q. Ran, H. Leo Lukas, G. Effenberg, G. Petzow, J. Less-Common Met. 146 (1989) 213-222.
DOI URL |
| [22] |
S. Liu, Y. Du, H. Xu, C. He, J.C. Schuster, J. Alloys Compd. 414 (2006) 60-65.
DOI URL |
| [23] |
Z. Du, W. Zhang, J. Alloys Compd. 245 (1996) 164-167.
DOI URL |
| [24] |
K. Xu, H. Zou, K. Chang, Z. Deng, X. Zhou, Y. Huang, L. Chen, F. Huang, Q. Huang, J. Eur. Ceram. Soc. 39 (2019) 4510-4519.
DOI URL |
| [25] | J. Gröbner, University of Stuttgart, 1994 (in Germany). |
| [26] |
S. Pukas, Y. Lutsyshyn, M. Manyako, E. Gladyshevskii, J. Alloys Compd. 367 (2004) 162-166.
DOI URL |
| [27] | I. Dubenko, A. Evdokimov, N. Titov Yu, J. Inorg. Chem. 30 (1985) 1707-1709. |
| [28] |
C. Kranenberg, A. Mewis, Z. Anorg. Allg. Chem. 626 (2000) 1448-1453.
DOI URL |
| [29] |
T.I. Yanson, M.B. Manyako, O.I. Bodak, R.E. Gladyshevskii, R. Cerny, K. Yvon, Acta Crystallogr. Sect. C 50 (1994) 1377-1379.
DOI URL |
| [30] | T. Yanson, Lvov State University, 1975 (in Lvov). |
| [31] | M.E. Drits, V.I. Kuz’mina, N.I. Turkina, Russ. Metall. 3 (1980) 178-181. |
| [32] | Q. Ran, University of Stuttgart, 1987 (in Germany). |
| [33] | Z. Pan, O. Fabrichnaya, H.J. Seifert, R. Neher, K. Brandt, M. Herrmann, J. PhaseEquilib. Diffus. 31 (2010) 238-249. |
| [34] | A. Murav’eva, Vestn Lviv Univ Ser Khim 12 (1971) 8-9. |
| [35] |
J. Du, H. Tu, H. Peng, Y. Liu, C. Wu, J. Wang, X. Su, J. Alloys Compd. 765 (2018) 608-615.
DOI URL |
| [36] |
J. Gröbner, D. Mirković, R. Schmid-Fetzer, Metall. Mater. Trans. A 35 (2004) 3349-3362.
DOI URL |
| [37] |
V. Raghavan, J. Phase Equilib. Diffus. 28 (2007) 456-458.
DOI URL |
| [38] |
Y. Li, Z. Li, Y. Liu, X. Wang, M. Zhao, F. Yin, J. Phase Equilib. Diffus. 35 (2014) 276-283.
DOI URL |
| [39] | N. Nakonechna, N. Lyaskovska, O. Romaniv, P. Starodub, E. Gladyshevskii, Vestn Lviv Univ Ser Khim 40 (2001) 61-67. |
| [40] |
A.M. Cardinale, D. Macciò, A. Saccone, J. Therm. Anal. Calorim. 121 (2015) 1151-1157.
DOI URL |
| [41] |
A.M. Cardinale, N. Parodi, J. Therm. Anal. Calorim. 134 (2018) 1327-1335.
DOI URL |
| [42] |
C. Anna Maria, M. Daniele, D. Stefano, S. Adriana, J. Therm. Anal. Calorim. 103 (2010) 103-109.
DOI URL |
| [43] |
L. Zhilin, Z. Yichun, Z. Yinghong, C. Rongzhen, L. Jingqi, W. Xianyou, J. Alloys Compd. 325 (2001) 190-193.
DOI URL |
| [44] | B. Markoli, S. Spaic, F. Zupanič, Z. Metallk. 92 (2001) 1098-1102. |
| [45] |
V. Raghavan, J. Phase Equilib. Diffus. 28 (2007), 556.
DOI URL |
| [46] | O. Zarechnyuk, T. Yanson, A. Murav’eva, Visn Lviv Univ Ser Khim 23 (1981) 64-67. |
| [47] |
A.M. Cardinale, N. Parodi, J. Phase Equilib. Diffus. 39 (2018) 68-73.
DOI URL |
| [48] |
A.M. Cardinale, D. Macciò, A. Saccone, J. Therm. Anal. Calorim. 108 (2012) 817-823.
DOI URL |
| [49] |
Y. Zhuang, J. Li, L. Zeng, J. Less-Common Met. 157 (1990) 47-53.
DOI URL |
| [50] | A.M. Cardinale, N. Parodi, J. Mater. Sci. Chem. Eng. 7 (2019) 9-17. |
| [51] |
S. Pukas, W. Łasocha, R. Gladyshevskii, Calphad 33 (2009) 23-26.
DOI URL |
| [52] |
V. Raghavan, J. Phase Equilib. Diffus. 31 (2010) 44-45.
DOI URL |
| [53] | O. Skolozdra, R. Skolozdra, E. Gladyshevskij, Neorg. Mater. 3 (1967) 813. |
| [54] |
H. Zhou, Q. Yao, S. Yuan, J. Liu, H. Deng, J. Alloys Compd. 366 (2004) 161-164.
DOI URL |
| [55] |
A.V. Morozkin, A.V. Knotko, A.V. Garshev, V.O. Yapaskurt, R. Nirmala, S. Quezado, S.K. Malik, J. Solid State Chem. 243 (2016) 290-303.
DOI URL |
| [56] |
O. Bodak, P. Salamakha, O. Sologub, J. Alloys Compd. 256 (1997) L8-L9.
DOI URL |
| [57] |
A.V. Morozkin, A.V. Knotko, V.O. Yapaskurt, P. Manfrinetti, M. Pani, A. Provino, R. Nirmala, S. Quezado, S.K. Malik, J. Solid State Chem. 235 (2016) 58-67.
DOI URL |
| [58] |
F. Yuan, Y. Mozharivskyj, A.V. Morozkin, A.V. Knotko, V.O. Yapaskurt, M. Pani, A. Provino, P. Manfrinetti, J. Solid State Chem. 219 (2014) 247-258.
DOI URL |
| [59] |
X. Chen, Y. Zhuang, Phase Trans. 90 (2017) 742-750.
DOI URL |
| [60] |
X. Chen, J.-X. Gong, J.-J. Luo, W.-X. Yang, X. Qing, J. Rare Earths 38 (2020) 969-975.
DOI URL |
| [61] | X. Chen, C. Ni, D.-C. Wang, J.Phase Equilib. Diffus. 41 (2020) 138-147. |
| [62] |
J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26 (2002) 273-312.
DOI URL |
| [63] |
A.T. Dinsdale, Calphad 15 (1991) 317-425.
DOI URL |
| [64] |
O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345-348.
DOI URL |
| [65] |
P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864-B871.
DOI URL |
| [66] |
W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133-A1138.
DOI URL |
| [67] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
PMID |
| [68] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
| [69] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1998) 3865-3868.
DOI URL |
| [70] |
P.E. Blöchl, Phys. Rev. B Condens. Matter 50 (1994) 17953-17979.
DOI URL |
| [71] |
M. Pani, P. Manfrinetti, A. Provino, F. Yuan, Y. Mozharivskyj, A.V. Morozkin, A.V. Knotko, A.V. Garshev, V.O. Yapaskurt, O. Isnard, J. Solid State Chem. 210 (2014) 45-52.
DOI URL |
| [72] |
A.V. Morozkin, A.V. Knotko, V.O. Yapaskurt, F. Yuan, Y. Mozharivskyj, R. Nirmala, J. Solid State Chem. 208 (2013) 9-13.
DOI URL |
| [73] |
W. Rieger, E. Parthé, Monatsh. Chem. 100 (1969) 444-454.
DOI URL |
| [74] |
I. Das, E.V. Sampathkumaran, R. Vijayaraghavan, J. Less-Common Met. 171 (1991) L13-L15.
DOI URL |
| [75] |
B. Chabot, E. Parthé, J. Less-Common Met. 97 (1984) 285-290.
DOI URL |
| [76] |
E. Hovestreydt, N. Engel, K. Klepp, B. Chabot, E. Parthé, J. Less-Common Met. 85 (1982) 247-274.
DOI URL |
| [77] |
K. Klepp, E. Parthe, Acta Crystallogr. Sect. B 38 (1982) 2026-2028.
DOI URL |
| [78] |
O. Moze, R.M. Ibberson, K.H.J. Buschow, Solid State Commun. 78 (1991) 473-476.
DOI URL |
| [79] |
H. Tang, E. Brück, F.R. de Boer, K.H.J. Buschow, J. Alloys Compd. 243 (1996) 85-89.
DOI URL |
| [80] | O. Bodak, Y. Gorelenko, V. Yarovets, Phys. Chem. Solid State 4 (2003) 401-403. |
| [81] |
Y. Gorelenko, R. Matviishyn, I. Shcherba, V. Pavlyuk, R. Serkiz, Chem. Met. Alloy 2 (2009) 18-24.
DOI URL |
| [82] |
M. Pasturel, N. Nasri, T. Guizouarn, B. Belgacem, R. Ben Hassen, O. Tougait, H. Noël, Intermetallics 90 (2017) 74-80.
DOI URL |
| [1] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
| [2] | Shiyi Wen, Yuling Liu, George Kaptay, Yong Du. A new model to describe composition and temperature dependence of thermal conductivity for solution phases in binary alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 72-82. |
| [3] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
| [4] | Qun Luo, Cong Zhai, Dongke Sun, Wei Chen, Qian Li. Interpolation and extrapolation with the CALPHAD method [J]. J. Mater. Sci. Technol., 2019, 35(9): 2115-2120. |
| [5] | Chao Liu, Quanqiang Shi, Wei Yan, Chunguang Shen, Ke Yang, Yiyin Shan, Mingchun Zhao. Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method [J]. J. Mater. Sci. Technol., 2019, 35(3): 266-274. |
| [6] | Qun Luo, Kang Li, Qian Li. Thermodynamic investigation of phase equilibria in Al-Si-V system [J]. J. Mater. Sci. Technol., 2018, 34(9): 1592-1601. |
| [7] | Weiliang Chen, Xueyong Ding, Yuchao Feng, Xiongjun Liu, Kui Liu, Z.P. Lu, Dianzhong Li, Yiyi Li, C.T. Liu, Xing-Qiu Chen. Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance [J]. J. Mater. Sci. Technol., 2018, 34(2): 355-364. |
| [8] | Kubásek Ji?í, Dvorsky Drahomír, ?avojsky Miroslav, Vojtěch Dalibor, Beronská Nad'a, Fousová Michaela. Superior Properties of Mg-4Y-3RE-Zr Alloy Prepared by Powder Metallurgy [J]. J. Mater. Sci. Technol., 2017, 33(7): 652-660. |
| [9] | Zhong Liping, Peng Jian, Sun Song, Wang Yongjian, Lu Yun, Pan Fusheng. Microstructure and Thermal Conductivity of As-Cast and As-Solutionized Mg-Rare Earth Binary Alloys [J]. J. Mater. Sci. Technol., 2017, 33(11): 1240-1248. |
| [10] | Y.J. Yang X.M. Tao W.J. Zhu Z.H. Long H.S. Liu Z.P. Jin. First-principles Calculation Assisted Thermodynamic Modeling of Ti-Co-Cu Ternary System [J]. J Mater Sci Technol, 2010, 26(4): 317-326. |
| [11] | Ruijie ZHANG, Zhi HE, Zhongwei CHEN, Wanqi JIE. Prediction of Solid-Liquid Interface Stability by Coupling M-S Model with CALPHAD Method [J]. J Mater Sci Technol, 2004, 20(04): 466-468. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
