J. Mater. Sci. Technol. ›› 2021, Vol. 79: 141-146.DOI: 10.1016/j.jmst.2020.12.002
• Letter • Previous Articles Next Articles
Sen-Hui Liua, Gang Jib, Chang-Jiu Lib, Cheng-Xin Lib,*(
), Hong-Bo Guoa,**(
)
Published:2021-01-20
Online:2021-01-20
Contact:
Cheng-Xin Li,Hong-Bo Guo
About author:** School of Materials Science and Engineering, Beihang University, Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing, 100191,China. E-mail addresses: guo.hongbo@buaa.edu.cn (H.-B. Guo).Sen-Hui Liu, Gang Ji, Chang-Jiu Li, Cheng-Xin Li, Hong-Bo Guo. Novel long laminar plasma sprayed hybrid structure thermal barrier coatings for high-temperature anti-sintering and volcanic ash corrosion resistance[J]. J. Mater. Sci. Technol., 2021, 79: 141-146.
Fig. 1. Photos of the laminar plasma jet in the atmospheric environment (a); the laminar plasma jet impinges on the substrate (b); the used airfoil substrate in (c) and the cross-section of a feed YSZ powder in the experiment (d); experimental measured particle velocity (e) and surface temperature (f) at different spraying distances that compared with other results.
| Business name | Powders | Output power | Gas flow rate | Refs. |
|---|---|---|---|---|
| Praxair SG-100 Torch | 8YSZ, AI-1075, Praxair, US | 32 kW, I = 800 A | Ar/He = 48/12 SLPM | [ |
| Metco A -2000 | 8YSZ, FuJimi, Japan | 40 kW, I = 600 A | Ar/H2 = 35/12 SLPM | [ |
| Sulzer F4VB Torch | 8YSZ, Metco -204NS, US | 36 kW, I = 600 A | Ar/H2 = 45/15 SLPM | [ |
| Triplex Pro-200 Gun | 8YSZ, Metco | 52 kW, I = 480-520 A | Ar = 40-50 SLPM | [ |
| -204NS, US | He = 4-10 SLPM | |||
| Triplex Ⅱ Gun | 8YSZ, Metco | 50 kW, I = 470/550 A | Ar = 40-50 SLPM | [ |
| -204NS, US | He = 4 SLPM | |||
| This Work | 8YSZ, Metco -204B-NS, US | 25.4 kW, I = 160 A | N2 /Ar = 6.3 / 2.7 SLPM |
Table 1 Comparison of experimental parameters in Fig. 1(e) and (f).
| Business name | Powders | Output power | Gas flow rate | Refs. |
|---|---|---|---|---|
| Praxair SG-100 Torch | 8YSZ, AI-1075, Praxair, US | 32 kW, I = 800 A | Ar/He = 48/12 SLPM | [ |
| Metco A -2000 | 8YSZ, FuJimi, Japan | 40 kW, I = 600 A | Ar/H2 = 35/12 SLPM | [ |
| Sulzer F4VB Torch | 8YSZ, Metco -204NS, US | 36 kW, I = 600 A | Ar/H2 = 45/15 SLPM | [ |
| Triplex Pro-200 Gun | 8YSZ, Metco | 52 kW, I = 480-520 A | Ar = 40-50 SLPM | [ |
| -204NS, US | He = 4-10 SLPM | |||
| Triplex Ⅱ Gun | 8YSZ, Metco | 50 kW, I = 470/550 A | Ar = 40-50 SLPM | [ |
| -204NS, US | He = 4 SLPM | |||
| This Work | 8YSZ, Metco -204B-NS, US | 25.4 kW, I = 160 A | N2 /Ar = 6.3 / 2.7 SLPM |
Fig. 2. The polished cross-sections of the as-sprayed coating (a), thermal exposed coatings at 1473 K for 48 h (b) and for 100 h (c); the top surface morphology of the as-sprayed coating (d), thermal exposed coatings at 1473 K for 48 h of (e) and for 100 h of (f); 3D top surface laser scanning microstructures of the as-sprayed coating (g), thermal exposed coatings at 1473 K for 48 h (h) and for 100 h (i) ; the hardness, elasticity modulus and thermal conductivity variations between the as-sprayed coating, thermal exposed coatings at 1473 K for 48 h and for 100 h are presented in (j) and (k), respectively. Also, thermal cycling lifetime were compared in (k).
| Methods /Authors | Cracks density (mm-1) | Thermal conductivity (W m-1 K-1) | Coating thickness (mm) | Feed power size (μm) | Spraying distance (mm) | Auxiliary heating of the Substrate | Refs. |
|---|---|---|---|---|---|---|---|
| Guo et al. (2004) by APS | 0.5- 3.6 | 0.8-1.5 | 0.-1.5 | 39-75 | 70-110 | Yes | [ |
| Karger et al. (2011) by APS | 3.5-8.9 | 1.4-1.8 | 0.3-0.5 | 9-51 | 80 | Partly Yes | [ |
| Jordan et al. (2014) by SPS | 1-3 | 0.6-0.8 | 0.2-1.5 | 0.3-0.95 | 38-57 | Partly Yes | [ |
| This Work | 4-5 | 0.9-1.35 | 0.15-0.18 | 39-75 | 270 | No |
Table 2 Experimental parameters in the manufacturing of vertical cracks of YSZ coatings.
| Methods /Authors | Cracks density (mm-1) | Thermal conductivity (W m-1 K-1) | Coating thickness (mm) | Feed power size (μm) | Spraying distance (mm) | Auxiliary heating of the Substrate | Refs. |
|---|---|---|---|---|---|---|---|
| Guo et al. (2004) by APS | 0.5- 3.6 | 0.8-1.5 | 0.-1.5 | 39-75 | 70-110 | Yes | [ |
| Karger et al. (2011) by APS | 3.5-8.9 | 1.4-1.8 | 0.3-0.5 | 9-51 | 80 | Partly Yes | [ |
| Jordan et al. (2014) by SPS | 1-3 | 0.6-0.8 | 0.2-1.5 | 0.3-0.95 | 38-57 | Partly Yes | [ |
| This Work | 4-5 | 0.9-1.35 | 0.15-0.18 | 39-75 | 270 | No |
Fig. 3. EBSD analyses on the polished cross-section of the as-sprayed coating of (a), thermal exposed coatings at 1473 K for 48 h (b) and for 100 h (c); IPF-Z orientation maps between the as-sprayed coating (d), thermal exposed coatings at 1473 K for 48 h (e) and for 100 h (f); grain size distributions in the as-sprayed coating (g), thermal exposed coatings at 1473 K for 48 h (h) and for 100 h (i).
Fig. 4. Experimental samples of CMAS on top surface of coating in (a), (b), (c); In-situ observations of a sequence of states of CMAS on the surface of the coating in (d), (e), (f), (g); uniformly distributed CMAS powders at 1523 K for 24 h on the top surface of the coating in (h), (i) and on the polished cross-section of the coating (j), (k); single droplet of the CMAS impinges on the surface of the coating (L), (m) ; the schematic diagram of the molten CMAS contacting on the top micro-nano protuberances of the coating (n).
| [1] |
H.B. Guo, R. VaEn, D. StVer, Surf. Coat. Technol. 186 (2004) 353-363.
DOI URL |
| [2] |
R. VabEn, H. KaNer, G. Mauer, D. StVer, J. Therm. Spray Technol. 19 (2010) 219-225.
DOI URL |
| [3] |
P. Fauchais, M. Vardelle, A. Vardelle, S. Goutier, J. Therm. Spray Technol. 24 (2015) 1120-1129.
DOI URL |
| [4] |
B. Bernard, A. Quet, L. Bianchi, V. Schick, A. Joulia, A. Malié, B. Rémy, J. Therm. Spray Technol. 26 (2017) 1025-1037.
DOI URL |
| [5] | P.L. Fauchais, J.V.R. Heberlein, M.I. Boulos, Thermal Spray Fundamentals, Springer Science+Business Media, 2014. |
| [6] |
P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle, S. Rossignol, J. Phys. D-Appl. Phys. 46 (2013) 224015.
DOI URL |
| [7] |
G. Mauer, V. Robert, S. Detlev, Surf. Coat. Technol. 202 (2008) 4374-4381.
DOI URL |
| [8] |
J.P. Trelles, E. Pfender, J. Heberlein, IEEE Trans. Plasma Sci. 36 (2008) 1026-1027.
DOI URL |
| [9] |
M. Baeva, D. Loffhagen, M.M. Becker, D. Uhrlandt, Plasma Chem. Plasma Process. 39 (2019) 949-968.
DOI URL |
| [10] | C.X. Li, S.H. Liu, C.J. Li, L. Li, J.H. Huang, P. Xu, China Surf. Eng. 32 (2019) 1-19 (In Chinese). |
| [11] |
S.H. Liu, S.L. Zhang, C.X. Li, L. Li, J.H. Huang, J.P. Trelles, B. Anthony, C.L. Murphy, Plasma Chem. Plasma Process. 39 (2019) 377-394.
DOI URL |
| [12] |
S.H. Liu, C.X. Li, L. Li, J.H. Huang, P. Xu, Y.Z. Hua, G.J. Yang, C.J. Li, Surf. Coat. Technol. 337 (2018) 241-249.
DOI URL |
| [13] |
S.H. Liu, J.P. Trelles, C.J. Li, H.B. Guo, C.X. Li, J. Phys. D-Appl. Phys. 53 (2020) 375202.
DOI URL |
| [14] |
S.H. Liu, C.X. Li, H.Y. Zhang, S.L. Zhang, L. Li, P. Xu, G.J. Yang, C.J. Li, Scr. Mater. 153 (2018) 73-76.
DOI URL |
| [15] |
S.H. Liu, H.Y. Zhang, Y.P. Wang, G. Ji, L. Li, P. Xu, J.H. Huang, S.L. Zhang, C.X. Li, C.J. Li, Surf. Coat. Technol. 363 (2019) 210-220.
DOI URL |
| [16] | Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM E1461-07, 2007 http://www.astm.org/DATABASE.CART/HISTORICAL/E1461-07.htm. |
| [17] |
Y. Wang, H. Guo, S. Gong, Ceram. Int. 35 (2009) 2639-2644.
DOI URL |
| [18] |
S.H. Liu, J.P. Trelles, A.B. Murphy, C.X. Li, J. Phys. D-Appl. Phys. 52 (2019) 335203.
DOI URL |
| [19] | L. Vincenzi, S. Suzuki, D. Outcalt, J. Heberlein, Controlling spray torch fluid dynamics—effect on spray particle and coating characteristics, J. Ther. Spray Technol. 19 (4) (2010) 713-722. |
| [20] | C. Zhang, H.L. Liao, W.Y. Li, G. Zhang, C. Coddet, C. Zhang, et al., Characterization of ysz solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying, J. Ther. Spray Technol. 15 (4) (2006) 598-603. |
| [21] | V. Debout, A. Vardelle, P. Fauchais, E. Meillot, E. Bruneton, F. Enguehard, S. Schelz, High Temp. Mater. Proc. 11 (2007) 309-320. |
| [22] |
G. Mauer, R. VapEn, D. StVer, Surf. Coat. Technol. 204 (1-2) (2009) 172-179.
DOI URL |
| [23] |
D. Basu, C. Funke, R.W. Steinbrech, J. Mater. Res. 14 (1999) 4643-4650.
DOI URL |
| [24] |
J. Pan, H. N.Ch’Ng, A.C.F. Cocks, Mech. Mater. 37 (2005) 705-721.
DOI URL |
| [25] | J.L. Shi, J. Mater. Res. 14 (4) (1999). |
| [26] |
R.M. German, Crit. Rev. Solid State Mater. Sci. 35 (2010) 263-305.
DOI URL |
| [27] |
M. Karger, R. Vaßen, D. Stöver, Surf. Coat. Technol. 206 (1) (2011) 16-23.
DOI URL |
| [28] | E.H. Jordan, C. Jiang, J. Roth, M. Gell, J. Ther. Spray Technol. (2014) 849-859. |
| [29] | M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, J. Ther. Spray Technol. (2008) 124-135. |
| [30] |
V.L. Wiesner, U.K. Vempati, N.P. Bansal, Scripta Mater. 124 (2016) 189-192.
DOI URL |
| [31] | T. Liu, S.W. Yao, L.S. Wang, G.J. Yang, C.X. Li, C.J. Li, J. Ther. Spray Technol. 25 (1-2) (2016) 213-221. |
| [32] |
J.M. Drexler, K. Shinoda, A.L. Ortiz, D. Li, A.L. Vasiliev, A.D. Gledhill, et al., Acta Mater 58 (20) (2010) 6835-6844.
DOI URL |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
