J. Mater. Sci. Technol. ›› 2021, Vol. 71: 221-227.DOI: 10.1016/j.jmst.2020.07.021
• Research Article • Previous Articles Next Articles
Boda Zhenga,b, Qingsheng Zhua,b,*(), Yang Zhaoa,b
Received:
2020-07-19
Accepted:
2020-07-21
Published:
2021-04-30
Online:
2021-04-30
Contact:
Qingsheng Zhu
About author:
* Institute of Metal Research, Chinese Academy of Sci-ences, Shenyang 110016, China.E-mail address: qszhu@imr.ac.cn (Q. Zhu).Boda Zheng, Qingsheng Zhu, Yang Zhao. Fabrication of high-quality silver nanowire conductive film and its application for transparent film heaters[J]. J. Mater. Sci. Technol., 2021, 71: 221-227.
Fig. 1. (a) SEM images of AgNWs prepared using different concentrations of iron ions. (b) SEM images of AgNWs during various concentrations of chloride ions. (c) Effect of different chloride on the synthesis of AgNWs.
Fig. 2. (a) High-magnification TEM image of the as-synthesized AgNW. (b) The corresponding SAED pattern of individual nanowire. (c) HRTEM image of the AgNW. The lattice fringes are spaced 0.235 nm apart, being nearly identical with the d value of the (111) planes of fcc silver.
Fig. 3. XPS spectra of (a) pure AgNWs, and (b) dispersed AgNWs. (c) O 1s spectrum of dispersed AgNWs. (d) FTIR spectra of dispersed AgNWs, compared with pure AgNWs.
Fig. 4. SEM images of AgNW networks depositing on substrates. The different concentration of AgNW dispersion formed different densities of AgNW networks: (a) 1 mg mL―1, (b) 0.75 mg mL―1, (c) 0.5 mg mL―1, and (d) 0.25 mg mL―1.
Fig. 6. (a) The change of the R/R0 with various bending radius. (b) The R/R0 value after high-cycle bending fatigue. Inset shows a home-made bending test device. (c) A plot R/R0 versus time in days demonstrates the stability of AgNW films.
Fig. 8. (a) Comparison of temperature of AgNW-based film heater with different sheet resistance. (b) Time-dependent temperature profiles of AgNW-based film heater (RS = 10 ohms sq―1) under diverse the input voltages.
[1] |
S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, ACS Nano 3 (2009) 1767-1774.
DOI URL |
[2] |
C.G. Granqvist, Sol. Energy Mater. Sol. Cells 91 (2007) 1529-1598.
DOI URL |
[3] |
H. Lee, M. Kim, I. Kim, H. Lee, Adv. Mater. 22 (2016) 4541-4548.
DOI URL |
[4] |
A. Kumar, C.W. Zhou, ACS Nano 4 (2010) 11-14.
DOI URL |
[5] |
Q. Cao, J.A. Rogers, Adv. Mater. 21 (2009) 29-53.
DOI URL |
[6] |
D.H. Zhang, K. Ryu, X.L. Liu, E. Polikarpov, M.E. Tompson, C.W. Zhou, Nano Lett. 6 (2006) 1880-1886.
DOI URL |
[7] |
Q.C. Zhang, L. Tang, J. Luo, J. Zhang, X.N. Wang, D. Li, Y.G. Yao, Z.X. Zhang, Carbon 111 (2017) 1-7.
DOI URL |
[8] |
Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Nat. Mater. 10 (2011) 424-428.
DOI URL |
[9] | H.T. Zhai, R.R. Wang, X. Wang, Y. Cheng, L.J. Shi, J. Sun, Nano Res. 6 (2016) 3924-3936. |
[10] |
J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Nano Lett. 8 (2008) 689-692.
DOI URL |
[11] |
E.C. Garnett, W.S. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, M.D. McGehee, M.L. Brongersma, Nat. Mater. 11 (2012) 241-249.
DOI PMID |
[12] |
L.B. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, ACS Nano 4 (2010) 2955-2963.
DOI URL |
[13] |
Y.H. Kim, C. Sachase, M.L. Machala, C. May, L. Müller-Meskamp, K. Leo, Adv. Funct. Mater. 21 (2011) 1076-1081.
DOI URL |
[14] |
M. Vosgueritchian, D.J. Lipomi, Z.N. Bao, Adv. Funct. Mater. 22 (2012) 421-428.
DOI URL |
[15] | J. Wang, J.T. Jiu, S.Y. Zhang, T. Sugahara, S. Nagao, K. Suganuma, P. He, Nanotechnology 29 (2018), 435701. |
[16] |
K. Zhan, R. Su, S.H. Bai, Z.H. Yu, N. Cheng, C.L. Wang, S. Xu, W. Liu, S.S. Guo, X.X. Zhao, Nanoscale 8 (2016) 18121-18133.
PMID |
[17] |
R.R.D. Silva, M.X. Yang, S. Choi, M.F. Chi, M. Luo, C. Zhang, Z.Y. Li, P.H.C. Camargo, S.J.L. Ribeiro, Y.N. Xia, ACS Nano 10 (2016) 7892-7900.
DOI URL |
[18] |
Y.G. Sun, B. Gates, B. Mayers, Y.N. Xia, Nano Lett. 2 (2002) 165-168.
DOI URL |
[19] |
Y. Zhang, J.N. Guo, D. Xu, Y. Sun, F. Yan, ACS Appl. Mater. Interfaces 9 (2017) 25465-25473.
DOI URL |
[20] |
Y.G. Sun, B. Mayers, T. Herricks, Y.N. Xia, Nano Lett. 3 (2003) 955-960.
DOI URL |
[21] |
J. Lee, I. Lee, T.S. Kim, J.Y. Lee, Small 9 (2013) 2887-2894.
DOI URL |
[22] |
J.H. Park, G.T. Hwang, S. Kim, J. Seo, H.J. Park, K. Yu, T.S. Kim, K.J. Lee, Adv. Mater. 29 (2017), 1603473.
DOI URL |
[23] |
S.H. Lee, H.K. Park, S. Kim, W. Son, I.W. Cheong, J.H. Kim, J. Mater. Chem. A Mater. Energy Sustain. 2 (2014) 7288-7294.
DOI URL |
[24] |
A. Czardybon, M. Lapkowski, Synth. Met. 119 (2001) 161-162.
DOI URL |
[25] |
L. Groenendaal, L. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Adv. Mater. 12 (2000) 481-494.
DOI URL |
[26] |
N. Duraisamy, S.J. Hong, K.H. Choi, Chem. Eng. J. 225 (2013) 887-894.
DOI URL |
[27] |
X.Q. Zhang, J. Wu, J.T. Wang, J. Zhang, Q.Q. Yang, Y.Y. Fu, Z.Y. Xie, Sol. Energy Mater. Sol. Cells 144 (2016) 143-149.
DOI URL |
[28] |
X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. Van Haesendonck, M. Van der Auweraer, W.R. Salaneck, M. Berggren, Chem. Mater. 18 (2006) 4354-4360.
DOI URL |
[29] |
J. Zhang, L. Gao, J. Sun, Y.Q. Liu, Y. Wang, J.P. Wang, Diamond Relat. Mater. 22 (2012) 82-87.
DOI URL |
[30] |
F. Oytun, O. Alpurk, F. Basarir, Mater. Res. Bull. 112 (2019) 53-60.
DOI URL |
[31] |
T.Y. Kim, Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, K.S. Suh, Adv. Funct. Mater. 23 (2013) 1250-1255.
DOI URL |
[32] |
S.J. Chang, K. Chen, Q. Hua, Y.S. Ma, W.X. Huang, J. Phys. Chem. C 115 (2011) 7979-7986.
DOI URL |
[33] |
T.Y. Kim, W.J. Kim, S.H. Hong, J.E. Kim, K.S. Suh, Angew. Chem. Int. Ed. 48 (2009) 3806-3809.
DOI URL |
[34] |
Y. Wang, H. Yang, J. Am. Chem. Soc. 127 (2005) 5316-5317.
DOI URL |
[35] |
A.R. Madaria, A. Kumar, F.N. Ishikawa, C.W. Zhou, Nano Res. 3 (2010) 564-573.
DOI URL |
[36] |
F. Selzer, F.N. Weib, D. Kneppe, L. Bormann, C. Sachse, N. Gaponik, A. Eychmuller, K. Leo, L.M. Meskamp, Nanoscale 7 (2015) 2777-2783.
DOI PMID |
[37] |
Y.X. Jin, D.Y. Deng, Y.R. Cheng, L.Q. Kong, F. Xiao, Nanoscale 6 (2014) 4812-4818.
DOI URL |
[38] |
S.L. Ji, W.W. He, K. Wang, Y.X. Ran, C.H. Ye, Small 10 (2014) 4951-4960.
DOI URL |
[39] |
P. Li, J.G. Ma, H.Y. Xu, D. Lin, X.D. Xue, X.Z. Yan, P. Xia, Y.C. Liu, J. Alloys. Compd. 664 (2016) 764-769.
DOI URL |
[1] | Song Jiang, Peng-Xiang Hou, Chang Liu, Hui-Ming Cheng. High-performance single-wall carbon nanotube transparent conductive films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2447-2462. |
[2] | Wei Xu, Qingsong Xu, Qijin Huang, Ruiqin Tan, Wenfeng Shen, Weijie Song. Fabrication of Flexible Transparent Conductive Films with Silver Nanowire by Vacuum Filtration and PET Mold Transfer [J]. J. Mater. Sci. Technol., 2016, 32(2): 158-161. |
[3] | Weiwei He, Changhui Ye. Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 581-588. |
[4] | Cheng Yang, Youhong Tang, Zijin Su, Zhexu Zhang, Cheng Fang. Preparation of Silver Nanowires via a Rapid, Scalable and Green Pathway [J]. J. Mater. Sci. Technol., 2015, 31(1): 16-22. |
[5] | Haifei YAO, Jialin SUN, Wei LIU, Hongsan SUN. Effect of a Magnetic Field on the Preparation of Silver Nanowires Using Solid Electrolyte Thin Films [J]. J Mater Sci Technol, 2007, 23(01): 39-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||