J. Mater. Sci. Technol. ›› 2021, Vol. 67: 127-134.DOI: 10.1016/j.jmst.2020.07.005
• Research article • Previous Articles Next Articles
Received:
2020-04-04
Revised:
2020-06-11
Accepted:
2020-06-12
Published:
2021-03-20
Online:
2021-04-15
Contact:
Guan-Jun Yang
About author:
* E-mail address: ygj@mail.xjtu.edu.cn (G.-J. Yang).Mei-Jun Liu, Guan-Jun Yang. Condensation behavior of gaseous phase during transported in the near-substrate boundary layer of plasma spray-physical vapor deposition[J]. J. Mater. Sci. Technol., 2021, 67: 127-134.
Parameters | Value |
---|---|
Ar / slpm | 35 |
He / slpm | 60 |
Net power / kW | 60 |
Operating pressure / Pa | 200 |
Spray distance / mm | 1000 |
Table 1 Simulation parameters.
Parameters | Value |
---|---|
Ar / slpm | 35 |
He / slpm | 60 |
Net power / kW | 60 |
Operating pressure / Pa | 200 |
Spray distance / mm | 1000 |
Fig. 3. Simulation results of PS-PVD flow field with substrate. (a), (b) and (c) is the simulation result of the pressure, temperature and velocity, respectively, where the plasma gases are Ar and He, and the operating pressure is 200 Pa; (d), (e) and (f) is the simulation result of the pressure, temperature and velocity, respectively, where the plasma gases are Ar and H2, and the operating pressure is 100 Pa [33].
Fig. 4. The data of temperature and pressure extract from the Fig. 3. (a) is the temperature distribution near the substrate from Fig. 3(a), (b) is the pressure distribution near the substrate from Fig. 3(b).
Fig. 8. Supersaturation distribution in the near-substrate. (a), (b) and (c) is are the supersaturated boundary layers when the powder feed rate is 20 g·min-1, 10 g·min-1 and 2 g·min-1, respectively.
Fig. 10. Transport behavior of gaseous phase near the substrate. (a) - (d) is the transport trajectories of gaseous phase with different collision times in the boundary layer.
Fig. 11. Condensation behavior of gaseous phase during transported in the center of boundary layer. (a) Quantity distribution of cluster, (b) diameter of cluster.
Fig. 12. Condensation behavior of gaseous phase when the thickness twice that of the center of boundary layer. (a) Quantity distribution of cluster, (b) diameter of cluster.
[1] | B. Liu, Y.C. Liu, C.H. Zhu, H.M. Xiang, H.F. Chen, L.C. Sun, Y.F. Gao, Y.C. Zhou, J.Mater. Sci. Technol. 35(2019) 833-851. |
[2] |
P. Jiang, X.L. Fan, Y.L. Sun, H.T. Wang, L.C. Su, T.J. Wang, J. Am. Ceram. Soc. 101(2018) 1-6.
DOI URL |
[3] |
F. Li, L. Zhou, J.X. Liu, Y. Liang, G.J. Zhang, J. Adv. Ceram. 8(2019) 576-582.
DOI URL |
[4] |
Q.L. Li, P. Song, K.Y. Lü, Q. Dong, Q. Li, J. Tan, Q.W. Li, J.S. Lu, Ceram. Int. 45(2019) 5566-5576.
DOI URL |
[5] |
L. Chen, P. Song, J. Feng, Scripta Mater 152 (2018) 117-121.
DOI URL |
[6] | G.R. Li, G.J. Yang, J. Mater. Sci.Technol. 35(2019) 231-238. |
[7] | L.M. He, Z.H. Xu, J.P. Li, R.D. Mu, S.M. He, G.H. Huang, J. Mater. Sci.Technol. 25(2009) 799-802. |
[8] | Q.M. Liu, S.Z. Huang, A.J. He, J. Mater. Sci.Technol. 35(2019) 2814-2823. |
[9] | W.W. Zhang, G.R. Li, Q. Zhang, G.J. Yang, G.W. Zhang, H.M. Mu, J. Mater. Sci.Technol. 34(2018) 1293-1304. |
[10] |
W.W. Zhang, G.R. Li, Q. Zhang, G.J. Yang, J. Adv. Ceram. 6(2017) 230-239.
DOI URL |
[11] |
H. Dong, J.T. Yao, X. Li, Y. Zhou, Y.B. Li, Ceram. Int. 44(2018) 3326-3332.
DOI URL |
[12] |
N.P. Padture, Nat. Mater. 15(2016) 804-809.
DOI URL PMID |
[13] | L. Yang, Q.X. Liu, Y.C. Zhou, W.G. Mao, C. Lu, J. Mater. Sci.Technol. 30(2014) 371-380. |
[14] |
K. von Niessen, M. Gindrat, A. Refke, J. Therm. Spray Technol. 19(2010) 502-509.
DOI URL |
[15] |
K. von Niessen, M. Gindrat, J. Therm. Spray Technol. 20(2011) 736-743.
DOI URL |
[16] |
A. Hospach, G. Mauer, R. Vassen, D. Stoever, J. Therm. Spray Technol. 20(2011) 116-120.
DOI URL |
[17] |
M.J. Liu, G. Zhang, Y.H. Lu, J.Q. Han, G.R. Li, C.X. Li, C.J. Li, G.J. Yang, Rare. Met. 39(2020) 479-497.
DOI URL |
[18] | Z.Q. Deng, X.F. Zhang, K.S. Zhou, M. Liu, C.M. Deng, J. Mao, Z.K. Chen, Chin. J.Aeronaut. 31(2018) 820-825. |
[19] | X.F. Zhang, K.S. Zhou, C.M. Deng, M. Liu, Z.Q. Deng, C.G. Deng, J.B. Song, J. Eur.Ceram. Soc. 36(2016) 697-703. |
[20] |
G. Mauer, Plasma. Chem. Plasma. Process. 34(2014) 1171-1186.
DOI URL |
[21] |
G. Mauer, M.O. Jarligo, S. Rezanka, A. Hospach, R. Vassen, Surf. Coat. Technol. 268(2015) 52-57.
DOI URL |
[22] |
A. Hospach, G. Mauer, R. Vassen, D. Stoever, J. Therm. Spray Technol. 21(2012) 435-440.
DOI URL |
[23] |
C. Li, H. Guo, L. Gao, L. Wei, S. Gong, H. Xu, J. Therm. Spray Technol. 24(2015) 534-541.
DOI URL |
[24] |
G. Mauer, A. Hospach, R. Vassen, Surf. Coat. Technol. 220(2013) 219-224.
DOI URL |
[25] | M. Goral, S. Kotowski, A. Nowotnik, M. Pytel, M. Drajewicz, J. Sieniawski, Surf.Coat. Technol. 237(2013) 51-55. |
[26] |
S. Rezanka, G. Mauer, R. Vassen, J. Therm. Spray Technol. 23(2014) 182-189.
DOI URL |
[27] | Y.M. Liao, B. Zhang, M.H. Chen, M. Feng, J.L. Wang, S.L. Zhu, F.H. Wang, Corros.Sci. 167(2020), 108526. |
[28] |
B. Vautherin, M.P. Planche, R. Bolot, A. Quet, L. Bianchi, G. Montavon, J. Therm. Spray Technol. 23(2014) 596-608.
DOI URL |
[29] | Q.Y. Chen, X.Z. Peng, G.J. Yang, C.X. Li, C.J. Li, J. Therm. Spray Technol. 24(2015) 1-8. |
[30] |
X.L. Yang, L.L. Wei, J.M. Li, B.P. Zhang, S.X. Wang, H.B. Guo, Ceram. Int. 44(2018) 10797-10805.
DOI URL |
[31] | G. Mauer, A. Hospach, N. Zotov, R. Vassen, Process J. Therm. Spray Technol. 22(2013) 83-89. |
[32] | X.L. Jiang, C.B. Liu, F. Lin, J. Mater. Sci.Technol. 23(2007) 449-456. |
[33] | M.J. Liu, K.J. Zhang, Q. Zhang, M. Zhang, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 371(2019) 950-959. |
[34] |
M. Georg, V.E. Robert, Surf. Coat. Technol. 371(2019) 417-427.
DOI URL |
[35] |
W.T. He, G. Mauer, M. Gindrat, R. Waeger, R. Vassen, J. Therm. Spray Technol. 26(2017) 83-92.
DOI URL |
[36] |
A.B. Murphy, Plasma. Chem. Plasma. Process. 20(2000) 279-297.
DOI URL |
[37] |
A.B. Murphy, C.J. Arundelli, Plasma. Chem. Plasma. Process. 14(1994) 451-490.
DOI URL |
[38] |
S. Gordon, B.J. Mcbride, NASA-Reference Publication, 1994.
URL PMID |
[39] | B.J.M. Sanford Gordon, NASA-Reference Publication Part 2, 1996, pp. 1311. |
[40] | S.A. Schaaf, P.L. Chambré, Princeton University Press,(1958) 687-739. |
[41] | J. Kestin, J.R. Dorfman, Academic Press, 1971. |
[42] | P.W. Atkins, J. De Paula, Oxford University Press, 2006. |
[43] | M. Gindrat, J.L. Dorier, C. Hollenstein, M. Loch, A. Refke, A. Salito, G. Barbezat, in: Proc Int Thermal Spray Conference, 2001. |
[44] |
M.J. Liu, M. Zhang, Q. Zhang, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 428(2018) 877-884.
DOI URL |
[45] |
M.J. Liu, M. Zhang, Q. Zhang, G.J. Yang, C.X. Li, C.J. Li, J. Therm. Spray Technol. 26(2017) 1641-1650.
DOI URL |
[46] |
M.J. Liu, M. Zhang, X.F. Zhang, G.R. Li, C.X. Li, C.J. Li, G.J. Yang, Appl. Surf. Sci. 486(2019) 80-92.
DOI URL |
[47] |
S.L. Girshick, Plasma Sour. Sci. Technol. 3(1994) 388-394.
DOI URL |
[48] | G. Mauer, R. Vaßen in: 12th High-Tech Plasma Processes Conference, 2012. |
[1] | Yanhui Li, Xingjie Jia, Wei Zhang, Yan Zhang, Guoqiang Xie, Zhiyong Qiu, Junhua Luan, Zengbao Jiao. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65(0): 171-181. |
[2] | Rui Jiang, Shengnan Qian, Chuang Dong, Ying Qin, Yujuan Wu, Jianxin Zou, Xiaoqin Zeng. Composition optimization of high-strength Mg-Gd-Y-Zr alloys based on the structural unit of Mg-Gd solid solution [J]. J. Mater. Sci. Technol., 2021, 72(0): 104-113. |
[3] | Dandan Wang, Junping Ju, Shuang Wang, Yeqiang Tan. Research progress on the luminescence of biomacromolecules [J]. J. Mater. Sci. Technol., 2021, 76(0): 60-75. |
[4] | Honggang Dong, Yueqing Xia, Xinxing Xu, Gul Jabeen Naz, Xiaohu Hao, Peng Li, Jun Zhou, Chuang Dong. Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model [J]. J. Mater. Sci. Technol., 2020, 39(0): 89-98. |
[5] | Long Zhang, Yi Wu, Shidong Feng, Wen Li, Hongwei Zhang, Huameng Fu, Hong Li, Zhengwang Zhu, Haifeng Zhang. Rejuvenated metallic glass strips produced via twin-roll casting [J]. J. Mater. Sci. Technol., 2020, 38(0): 73-79. |
[6] | Beibei Jiang, Donghui Wen, Qing Wang, Jinda Che, Chuang Dong, Peter K. Liaw, Fen Xu, Lixian Sun. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol., 2019, 35(6): 1008-1016. |
[7] | Jialong Tian, M. Babar Shahzad, Wei Wang, Lichang Yin, Zhouhua Jiang, Ke Yang. Role of Co in formation of Ni-Ti clusters in maraging stainless steel [J]. J. Mater. Sci. Technol., 2018, 34(9): 1671-1675. |
[8] | Shengnan Qian, Chuang Dong, Tianyu Liu, Ying Qin, Qing Wang, Yujuan Wu, Lidong Gu, Jianxin Zou, Xiangwen Heng, Liming Peng, Xiaoqin Zeng. Solute-homogenization model and its experimental verification in Mg-Gd-based alloys [J]. J. Mater. Sci. Technol., 2018, 34(7): 1132-1141. |
[9] | Pingbo Chen, Tao Liu, Fengyu Kong, Anding Wang, Chunyan Yu, Gang Wang, Chuntao Chang, Xinmin Wang. Ferromagnetic element microalloying and clustering effects in high Bs Fe-based amorphous alloys [J]. J. Mater. Sci. Technol., 2018, 34(5): 793-798. |
[10] | Shang Fu, Ying Zhang, Huiqun Liu, Danqing Yi, Bin Wang, Yong Jiang, Zhiquan Chen, Ning Qi. Influence of electric field on the quenched-in vacancy and solute clustering during early stage ageing of Al-Cu alloy [J]. J. Mater. Sci. Technol., 2018, 34(2): 335-343. |
[11] | Hristov Hristo, Nedyalkova Miroslava, Madurga Sergio, Simeonov Vasil. Boron Oxide Glasses and Nanocomposites: Synthetic, Structural and Statistical Approach [J]. J. Mater. Sci. Technol., 2017, 33(6): 535-540. |
[12] | Zaixing Jiang, Mingqiang Wang, Hao Cheng, Jun Li, Aslan Husnu, Haibao Lv, Yongtao Yao, Lu Shao, Yudong Huang, Mingdong Dong. Facile Preparation of TiO2 Nanoclusters on Graphene Templates for Photodegradation of Organic Compounds [J]. J. Mater. Sci. Technol., 2015, 31(8): 840-844. |
[13] | Yonggang Wang, Yan Liu, Yingjie Li, Bang An, Guanghui Cao, Shifeng Jin, Yimin Sun, Weimin Wang. Crystallization of Al-based Amorphous Alloys in Good Conductivity Solution [J]. J. Mater. Sci. Technol., 2014, 30(12): 1262-1270. |
[14] | X.L. Tian C.W. Zhan J.X. Hou X.C. Chen J.J. Sun. Nanocrystal Model for Liquid Metals and Amorphous Metals [J]. J Mater Sci Technol, 2010, 26(1): 69-74. |
[15] | Huaqing LI, Shuisheng XIE, Xujun MI, Pengyue WU. Phase and Microstructure Analysis of Cu-Cr-Zr Alloys [J]. J Mater Sci Technol, 2007, 23(06): 795-800. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||