J. Mater. Sci. Technol. ›› 2021, Vol. 65: 118-125.DOI: 10.1016/j.jmst.2020.05.069
• Research Article • Previous Articles Next Articles
Xiangtao Yua,*(
), Xiangyu Rena, Yanwei Zhanga, Zhangfu Yuana, Zhuyin Suib, Mingyong Wangc
Received:2020-04-02
Revised:2020-05-03
Accepted:2020-05-12
Published:2021-02-28
Online:2021-03-15
Contact:
Xiangtao Yu
About author:* E-mail address: xtyu2018@ustb.edu.cn (X. Yu).Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production[J]. J. Mater. Sci. Technol., 2021, 65: 118-125.
Fig. 2. (a) The XRD patterns of various NiCoP-based films. The HRTEM image (b), SEM image (c), and TEM image (d) of NiCoP-OA-AE film. The inset in (b) is the corresponding SAED pattern.
Fig. 3. (a) Survey XPS spectra of various NiCoP-based films. The corresponding high resolution XPS spectra of (b) Ni 2p, (c) Co 2p, and (d) P 2p for the NiCoP-OA-AE film. The inset table in (a) is the chemical composition of corresponding NiCoP-based films.
Fig. 4. (a) and (d) Linear sweep curves at 5 mV s-1, (b) and (e) Tafel polarization curves at 0.1 mV s-1, (c) and (f) Nyquist plots at the overpotential of 200 mV for HER on various films in different solutions: (a, b, c) in 1 M KOH and (d, e, f) in 0.5 M H2SO4. The inset in (c) is one time constant electrical equivalent circuit used to describe the EIS response of HER.
Fig. 5. (a) The cell voltage (U)?time (t) curves at 500 A cm-2 for HER on different NiCoP-based films in 0.5 M H2SO4. The contact angles (CA) and optical images showing bubbles on substrates during the HER at 500 mA cm-2 of different NiCoP-based films: (b) NiCoP-OA and (c) NiCoP-OA-AE.
| [1] |
X. Huang, X. Xu, C. Li, D. Wu, D. Cheng, D. Cao, Adv. Energy Mater. 9 (2019), 1803970.
DOI URL |
| [2] |
Q. Luo, Q. Gu, B. Liu, T. Zhang, W. Liu, Q. Li, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 23308-23317.
DOI URL |
| [3] |
L. Meng, W. Tian, F. Wu, F. Cao, L. Li, J. Mater. Sci. Technol. 35 (2019) 1740-1746.
DOI URL |
| [4] |
G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, J. Li, J. Am. Chem. Soc. 138 (2016) 14686-14693.
DOI URL PMID |
| [5] |
Z. Liu, J. Wang, C. Zhan, J. Yu, Y. Cao, J. Tu, C. Shi, J. Mater. Sci. Technol. 46 (2020) 177-184.
DOI URL |
| [6] |
J. Hu, S. Zheng, X. Zhao, X. Yao, Z. Chen, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 7827-7834.
DOI URL |
| [7] |
J. Callejas, C. Read, E. Popczun, J. McEnaney, R. Schaak, Chem. Mater. 27 (2015) 3769-3774.
DOI URL |
| [8] |
P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 5 (2015), 1500985.
DOI URL |
| [9] |
Y. Men, P. Li, J. Zhou, G. Cheng, S. Chen, W. Luo, ACS Catal. 9 (2019) 3744-3752.
DOI URL |
| [10] |
Y. Li, H. Zhang, M. Jiang, Y. Kuang, X. Sun, X. Duan, Nano Res. 9 (2016) 2251-2259.
DOI URL |
| [11] |
J. Wang, Z. Liu, C. Zhan, K. Zhang, X. Lai, J. Tu, Y. Cao, J. Mater. Sci. Technol. 39 (2020) 155-160.
DOI URL |
| [12] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
| [13] |
X. Yu, M. Wang, X. Gong, Z. Guo, Z. Wang, S. Jiao, Adv. Energy Mater. 8 (2018), 1802445.
DOI URL |
| [14] |
L. Jin, H. Xia, Z. Huang, C. Lv, J. Wang, M. Humphrey, C. Zhang, J. Mater. Chem. A. 4 (2016) 10925-10932.
DOI URL |
| [15] |
X. Yu, J. Yang, Z. Yuan, L. Guo, Z. Sui, M. Wang, Ceram. Int. 46 (2020) 17469-17477.
DOI URL |
| [16] |
X. Yu, X. Ren, L. Guo, Z. Yuan, Z. Sui, M. Wang, Appl. Surf. Sci. 518 (2020), 146220.
DOI URL |
| [17] |
J. Kibsgaard, C. Tsai, K. Chan, J.D. Benck, J.K. Norskov, F. Abild-Pedersen, Energy Environ. Sci. 8 (2015) 3022-3029.
DOI URL |
| [18] |
Y. Lin, K. Sun, S. Liu, X. Chen, Y. Cheng, W. Cheong, Z. Chen, L. Zheng, J. Zhang, X. Li, Y. Pan, C. Chen, Adv. Energy Mater. 9 (2019), 1901213.
DOI URL |
| [19] |
W. Li, B. Yu, Y. Hu, X. Wang, B. Wang, X. Zhang, D. Yang, Z. Wang, Y. Chen, J. Power Sources 456 (2020), 228015.
DOI URL |
| [20] |
C.A. Marozzi, A.C. Chialvo, Electrochim. Acta 46 (2001) 861-866.
DOI URL |
| [21] |
R. Szamocki, A. Velichko, C. Holzapfel, F. Mucklich, S. Ravaine, P. Garrigue, N. Sojic, R. Hempelmann, A. Kuhn, Anal. Chem. 79 (2007) 533-539.
DOI URL PMID |
| [22] |
X. Yu, M. Wang, Z. Wang, X. Gong, Z. Guo, Electrochim. Acta 211 (2016) 900-910.
DOI URL |
| [23] |
J. Wang, Q. Yang, M. Wang, C. Wang, L. Jiang, Soft Matter 8 (2012) 2261-2266.
DOI URL |
| [24] |
A.K. Kota, Y. Li, J.M. Mabry, A. Tuteja, Adv. Mater. 24 (2012) 5838-5843.
DOI URL PMID |
| [25] |
S.M. Lim, K. Kang, H. Jang, J.T. Park, J. Mater. Sci. Technol. 46 (2020) 185-190.
DOI URL |
| [26] |
M. Patel, J. Zhang, J. Park, N. Choudhary, J. Tour, W. Choi, Mater. Lett. 225 (2018) 65-68.
DOI URL |
| [27] |
C. Yan, J. Huang, C. Wu, Y. Li, Y. Tan, L. Zhang, Y. Sun, X. Huang, J. Xiong, J. Mater. Sci. Technol. 42 (2020) 10-16.
DOI URL |
| [28] |
X.T. Yu, M.Y. Wang, Z. Wang, X.Z. Gong, Z.C. Guo, Appl. Surf. Sci. 360 (2016) 502-509.
DOI URL |
| [29] |
X. Yu, M. Wang, Z. Wang, X. Gong, Z. Guo, J. Phys. Chem. C 121 (2017) 16792-16802.
DOI URL |
| [30] |
Q. Xie, D. Zeng, P. Gong, J. Huang, Y. Ma, L. Wang, D.L. Peng, Electrochim. Acta 232 (2017) 465-473.
DOI URL |
| [31] |
Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu, P. Wan, X. Sun, L. Jiang, Adv. Funct. Mater. 25 (2015) 1737-1744.
DOI URL |
| [32] |
X. Xu, J. Liu, Z. Liu, Z. Wang, R. Hu, J. Liu, L. Ouyang, M. Zhu, Small 14 (2018), 1800793.
DOI URL |
| [33] |
M.Y. Wang, Z. Wang, X.Z. Gong, Z.C. Guo, Renew. Sust. Energy Rev. 29 (2014) 573-588.
DOI URL |
| [34] |
S.H. Ahn, I. Choi, H.Y. Park, S.J. Hwang, S.J. Yoo, E. Cho, H.J. Kim, D. Henke, S.W. Nam, S.K. Kim, J.H. Jang, Chem. Commun. (Camb.) 49 (2013) 9323-9325.
DOI URL |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
