J. Mater. Sci. Technol. ›› 2021, Vol. 61: 234-246.DOI: 10.1016/j.jmst.2020.05.031
• Research Article • Previous Articles
Hu Liua,c, Jie Weia,b,*(), Junhua Donga,b,*(
), Yiqing Chenb, Yumin Wub, Yangtao Zhoua, Subedi Dhruba Babua,c, Wei Kea
Received:
2020-02-21
Revised:
2020-05-12
Accepted:
2020-05-21
Published:
2021-01-20
Online:
2021-01-20
Contact:
Jie Wei,Junhua Dong
Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment[J]. J. Mater. Sci. Technol., 2021, 61: 234-246.
Fig. 3. The microstructures of as-received (a, c, e) and spheroidized (b, d, f) steels before corrosion. (a, b) are optical microscope photos, (c, d) are SEM images, (e, f) are bright field TEM micrographs.
Fig. 5. EBSD-(a, b) grain size distribution and (a1, b1) misorientation angle distribution plots of the steel: (a, a1) as-received steel, (b, b1) spheroidized steel.
Fig. 9. The optical photos (taken by SM) of as-received steel after 12 h (a), 24 h (b) and 48 h (c) of immersion in simulated solution. (d, e, f) are the corresponding 3D LSCM maps while (h, i, j) are the corresponding depth profile.
Fig. 10. The optical photos of spheroidized steel after 12 h (a), 24 h (b) and 48 h (c) of immersion in simulated solution. (d, e, f) are the corresponding 3D LSCM maps.
Fig. 12. The SEM pictures of corroded surface morphology of as-received (a, b, c) and spheroidized (d, e, f) steels after 24 h, 120 h and 216 h of corrosion.
Fig. 18. The equivalent circuits of as-received (a, a’) and spheroidized (b) steels after corrosion for different time. (a) 24 h-72 h, (a’) 120 h-216 h.
t(h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 sn) | nc | Rc (Ω cm2) | L2 (H cm2) | R0 (Ω cm2) | Ya×103 (Ω-1 cm-2 sn) | na | Ra (Ω cm2) | Chi-squared, x2 |
---|---|---|---|---|---|---|---|---|---|---|---|
24 | 4.566 | 4.439 | 0.4558 | 0.9406 | 84.20 | - | - | 1.873 | 0.7682 | 86.91 | 1.617 × 10-4 |
48 | 5.677 | 4.084 | 0.6104 | 0.9048 | 47.45 | - | - | 1.936 | 0.8378 | 45.60 | 6.522 × 10-5 |
72 | 5.264 | 4.225 | 0.8828 | 0.8047 | 21.43 | - | - | 8.158 | 0.8132 | 22.30 | 3.200 × 10-4 |
120 | 7.542 | 3.681 | 2.552 | 0.7839 | 13.16 | 410.4 | 4.022 | 6.620 | 0.6606 | 10.24 | 4.776 × 10-4 |
216 | 4.065 | 4.075 | 4.234 | 0.7353 | 3.277 | 167.8 | 3.580 | 65.98 | 0.6609 | 4.980 | 7.592 × 10-4 |
Table 1 The fitting parameters of as-received steel after different time of corrosion.
t(h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 sn) | nc | Rc (Ω cm2) | L2 (H cm2) | R0 (Ω cm2) | Ya×103 (Ω-1 cm-2 sn) | na | Ra (Ω cm2) | Chi-squared, x2 |
---|---|---|---|---|---|---|---|---|---|---|---|
24 | 4.566 | 4.439 | 0.4558 | 0.9406 | 84.20 | - | - | 1.873 | 0.7682 | 86.91 | 1.617 × 10-4 |
48 | 5.677 | 4.084 | 0.6104 | 0.9048 | 47.45 | - | - | 1.936 | 0.8378 | 45.60 | 6.522 × 10-5 |
72 | 5.264 | 4.225 | 0.8828 | 0.8047 | 21.43 | - | - | 8.158 | 0.8132 | 22.30 | 3.200 × 10-4 |
120 | 7.542 | 3.681 | 2.552 | 0.7839 | 13.16 | 410.4 | 4.022 | 6.620 | 0.6606 | 10.24 | 4.776 × 10-4 |
216 | 4.065 | 4.075 | 4.234 | 0.7353 | 3.277 | 167.8 | 3.580 | 65.98 | 0.6609 | 4.980 | 7.592 × 10-4 |
t(h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 sn) | nc | Rc (Ω cm2) | Ya×103 (Ω-1 cm-2 sn) | na | Ra (Ω cm2) | Chi-squared, x2 |
---|---|---|---|---|---|---|---|---|---|
24 | 6.883 | 3.925 | 0.6980 | 0.9281 | 48.06 | 2.395 | 0.8242 | 48.12 | 1.921 × 10-5 |
48 | 3.689 | 4.062 | 1.168 | 0.8836 | 46.10 | 2.302 | 0.8417 | 45.07 | 4.467 × 10-5 |
72 | 4.436 | 4.447 | 0.6646 | 0.9330 | 41.60 | 2.445 | 0.7725 | 40.37 | 4.499 × 10-5 |
120 | 4.695 | 4.014 | 1.305 | 0.8789 | 36.60 | 5.303 | 0.7914 | 35.61 | 1.355 × 10-4 |
216 | 4.743 | 4.836 | 7.219 | 0.8550 | 18.72 | 2.507 | 0.7102 | 18.61 | 7.965 × 10-4 |
Table 2 The fitting parameters of spheroidized steel after different time of corrosion.
t(h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 sn) | nc | Rc (Ω cm2) | Ya×103 (Ω-1 cm-2 sn) | na | Ra (Ω cm2) | Chi-squared, x2 |
---|---|---|---|---|---|---|---|---|---|
24 | 6.883 | 3.925 | 0.6980 | 0.9281 | 48.06 | 2.395 | 0.8242 | 48.12 | 1.921 × 10-5 |
48 | 3.689 | 4.062 | 1.168 | 0.8836 | 46.10 | 2.302 | 0.8417 | 45.07 | 4.467 × 10-5 |
72 | 4.436 | 4.447 | 0.6646 | 0.9330 | 41.60 | 2.445 | 0.7725 | 40.37 | 4.499 × 10-5 |
120 | 4.695 | 4.014 | 1.305 | 0.8789 | 36.60 | 5.303 | 0.7914 | 35.61 | 1.355 × 10-4 |
216 | 4.743 | 4.836 | 7.219 | 0.8550 | 18.72 | 2.507 | 0.7102 | 18.61 | 7.965 × 10-4 |
[1] |
K. Lu, Science 328 (2010) 319-320.
URL PMID |
[2] |
K.S. Liu, L. Jiang, Nanoscale 3 (2011) 825-838.
DOI URL PMID |
[3] | A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, M.S. Dargusch, Adv. Eng. Mater. 17 (2015) 400-453. |
[4] | X.H. Hao, J.H. Dong, X. Mu, J. Wei, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 35 (2019) 799-811. |
[5] |
S. Ahn, K.J. Park, K. Oh, S. Hwang, B. Park, H. Kwon, M. Shon, Met. Mater. Int. 21 (2015) 865-873.
DOI URL |
[6] | W. Liu, Q. Zhou, L. Li, Z. Wu, F. Cao, Z. Gao, J. Alloys Compd. 598 (2014) 198-204. |
[7] | H.E. Townsend, Corrosion 57 (2001) 497-501. |
[8] | Y.L. Zhou, J. Chen, Y. Xu, Z.Y. Liu, J. Mater. Sci. Technol. 29 (2013) 168-174. |
[9] |
X.H. Hao, J.H. Dong, J. Wei, I.I.N. Etim, W. Ke, Corros. Sci. 121 (2017) 84-93.
DOI URL |
[10] | T. Ujiro, S. Satoh, R.W. Staehle, W.H. Smyrl, Corros. Sci. 43 (2001) 2185-2200. |
[11] |
R.L. Liu, M.F. Hurley, A. Kvryan, G. Williams, J.R. Scully, N. Birbilis, Sci. Rep. 6 (2016) 28747.
DOI URL PMID |
[12] | L.M. Zhang, S.D. Zhang, A.L. Ma, A.J. Umoh, H.X. Hu, Y.G. Zheng, B.J. Yang, J.Q. Wang, J. Mater. Sci. Technol. 35 (2019) 1378-1387. |
[13] |
Z.M. Li, H.C. Jiang, Y.L. Wang, D. Zhang, D.S. Yan, L.J. Rong, J. Mater. Sci. Technol. 34 (2018) 1172-1179.
DOI URL |
[14] |
L. Yang, X.Y. Li, K. Lu, Acta Metall. Sin. 53 (2017) 1413-1417.
DOI URL |
[15] |
K. Lu, L. Lu, S. Suresh, Science 324 (2009) 349-352.
DOI URL PMID |
[16] |
L. Lu, X. Chen, Science 323 (2009) 607-610.
URL PMID |
[17] | J. Wei, J.H. Dong, W. Ke, X.Y. He, Corrosion 71 (2015) 1467-1480. |
[18] | C. Liu, Z.H. Jiang, J.B. Zhao, X.Q. Cheng, Z.Y. Liu, D.W. Zhang, X.G. Li, Corros. Sci. 166 (2020) 108463. |
[19] | C. Liu, R.I. Revilla, Z.Y. Liu, D.W. Zhang, X.G. Li, H. Terryn, Corros. Sci. 129 (2017) 82-90. |
[20] | C. Liu, R.I. Revilla, D.W. Zhang, Z.Y. Liu, A. Lutz, F. Zhang, T.L. Zhao, H.C. Ma, X.G. Li, H. Terryn, Corros. Sci. 138 (2018) 96-104. |
[21] | C. Liu, X.Q. Cheng, Z.Y. Dai, R. Liu, Z.Y. Li, L.Y. Cui, M.D. Chen, L. Ke, Materials 11 (2018) 2277. |
[22] | J. Wei, J.H. Dong, Y.T. Zhou, X.Y. He, C.G. Wang, W. Ke, Mater. Charact. 139 (2018) 401-410. |
[23] | D. Eaves, G. Williams, H.N. McMurray, Electrochim. Acta 79 (2012) 1-7. |
[24] | A. Moteshakker, I. Danaee, J. Mater. Sci. Technol. 32 (2016) 282-290. |
[25] |
M. Schneider, K. Kremmer, C. Lammel, K. Sempf, M. Herrmann, Corros. Sci. 80 (2014) 191-196.
DOI URL |
[26] | E. Rahimi, A. Rafsanjani-Abbasi, A. Imani, S. Hosseinpour, A. Davoodi, Corros. Sci. 140 (2018) 30-39. |
[27] | A.I. Ikeuba, B. Zhang, J.Q. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol. 35 (2019) 1444-1454. |
[28] | X. Chen, J. Wu, J. Wang, C. Wang, Cor. Sci. Pro. Tech. 22 (2010) 363-366. |
[29] | C. Wang, J. Wu, Q. Li, J. Chin. Soc. Corros. Prot. 30 (2010) 416-420. |
[30] | T.K. Ha, C.H. Lee, K.S. Kim, Mater. Sci.Forum 654-656 (2010) 150-153. |
[31] | F.M. Al-Abbasi, Mater. Sci. Eng. A Struct.Mater. Prop. Microstruct. Process. 527 (2010) 6904-6916. |
[32] | L.W. Wang, C.W. Du, Z.Y. Liu, X.X. Zeng, X.G. Li, Acta Metall. Sin. 47 (2011) 1227-1232. |
[33] |
X.H. Hao, J.H. Dong, I.-I.N. Etim, J. Wei, W. Ke, Corros. Sci. 110 (2016) 296-304.
DOI URL |
[34] | C.N. Cao, Principles of Electrochemistry of Corrosion, Chemical Industry Press, Beijing, 2008. |
[35] | M. Caruso, S. Godet, Adv. Mater. Res. 89-91 (2010) 79-84. |
[36] | A. Mishra, A. Saha, J. Maity, Mater. Charact. 114 (2016) 277-288. |
[37] | J. Wei, Y.T. Zhou, J.H. Dong, X.Y. He, W. Ke, Materialia 6 (2019), 100316. |
[38] | Z.Q. Lv, B. Wang, Z.H. Wang, S.H. Sun, W.T. Fu, Mater. Sci. Eng. A Struct.Mater. Prop. Microstruct. Process. 574 (2013) 143-148. |
[39] | IMO, Proc of the Maritime Safety Committee on Its Eighty-Seventh SessionAnnex 3 MSC. 289 (87), London, 2010. |
[40] | ISO.8407:2009, Corrosion of Metals and Alloys - Removal of Corrosion Products From Corrosion Test Specimens, Switzerland, 2009. |
[41] | H. Li, F. Chai, C. Yang, H. Su, X. Luo, Iron Steel 52 (2017) 76-82. |
[42] | A.V. Syugaev, N.V. Lyalina, S.F. Lomaeva, S.M. Reshetnikov, Prot. Met. Phys. Chem. Surf. 48 (2012) 515-519. |
[43] | X.Y. Liao, S.G. Wang, Z.Y. Ma, J.G. Wang, Y.W. Li, H.J. Jiao, J. Mol. Catal. A Chem. 292 (2008) 14-20. |
[44] | M. Eder, K. Terakura, J. Hafner, Phys. Rev. B 64 (2001), 115426. |
[45] | J.K. Norskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, J. Electrochem. Soc. 152 (2005) J23-J26. |
[46] | A. Nishikata, Q.J. Zhu, E. Tada, Corros. Sci. 87 (2014) 80-88. |
[47] | A. Nishikata, F. Suzuki, T. Tsuru, Corros. Sci. 47 (2005) 2578-2588. |
[48] | C. Cao, J. Wang, H. Lin, J. Chin. Soc. Corros. Prot. 9 (1989) 261-270. |
[49] | J. Wang, C.N. Cao, H.C. Lin, J. Chin. Soc. Corros. Prot. 9 (1989) 271-279. |
[50] | F. Mansfeld, M.W. Kendig, J. Chin. Soc. Corros. Prot. 135 (1988) 828-833. |
[1] | Yuefeng Jiang, Bo Zhang, Dongying Wang, Yu Zhou, Jianqiu Wang, En-Hou Han, Wei Kea. Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel [J]. J. Mater. Sci. Technol., 2019, 35(6): 1081-1087. |
[2] | Jinshan Zhang, Jidong Xu, Weili Cheng, Changjiu Chen, Jingjing Kang. Corrosion Behavior of Mg-Zn-Y Alloy with Long-period Stacking Ordered Structures [J]. J. Mater. Sci. Technol., 2012, 28(12): 1157-1162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||